MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpowndlem1 Structured version   Visualization version   GIF version

Theorem axpowndlem1 10070
Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.)
Assertion
Ref Expression
axpowndlem1 (∀𝑥 𝑥 = 𝑦 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))

Proof of Theorem axpowndlem1
StepHypRef Expression
1 pm2.24 124 . 2 (𝑥 = 𝑦 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
21sps 2182 1 (∀𝑥 𝑥 = 𝑦 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1536  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-ex 1782
This theorem is referenced by:  axpownd  10074
  Copyright terms: Public domain W3C validator