MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axunnd Structured version   Visualization version   GIF version

Theorem axunnd 10352
Description: A version of the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
axunnd 𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)

Proof of Theorem axunnd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 axunndlem1 10351 . . . 4 𝑤𝑦(∃𝑤(𝑦𝑤𝑤𝑧) → 𝑦𝑤)
2 nfnae 2434 . . . . . 6 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
3 nfnae 2434 . . . . . 6 𝑥 ¬ ∀𝑥 𝑥 = 𝑧
42, 3nfan 1902 . . . . 5 𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
5 nfnae 2434 . . . . . . 7 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
6 nfnae 2434 . . . . . . 7 𝑦 ¬ ∀𝑥 𝑥 = 𝑧
75, 6nfan 1902 . . . . . 6 𝑦(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
8 nfv 1917 . . . . . . . 8 𝑤(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
9 nfcvf 2936 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
109adantr 481 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑦)
11 nfcvd 2908 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑤)
1210, 11nfeld 2918 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦𝑤)
13 nfcvf 2936 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑧𝑥𝑧)
1413adantl 482 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑧)
1511, 14nfeld 2918 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑤𝑧)
1612, 15nfand 1900 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑦𝑤𝑤𝑧))
178, 16nfexd 2323 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑤(𝑦𝑤𝑤𝑧))
1817, 12nfimd 1897 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(∃𝑤(𝑦𝑤𝑤𝑧) → 𝑦𝑤))
197, 18nfald 2322 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑦(∃𝑤(𝑦𝑤𝑤𝑧) → 𝑦𝑤))
20 nfcvd 2908 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑦𝑤)
21 nfcvf2 2937 . . . . . . . . . 10 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
2221adantr 481 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑦𝑥)
2320, 22nfeqd 2917 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑦 𝑤 = 𝑥)
247, 23nfan1 2193 . . . . . . 7 𝑦((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥)
25 elequ2 2121 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑦𝑤𝑦𝑥))
26 elequ1 2113 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤𝑧𝑥𝑧))
2725, 26anbi12d 631 . . . . . . . . . . 11 (𝑤 = 𝑥 → ((𝑦𝑤𝑤𝑧) ↔ (𝑦𝑥𝑥𝑧)))
2827a1i 11 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑦𝑤𝑤𝑧) ↔ (𝑦𝑥𝑥𝑧))))
294, 16, 28cbvexd 2408 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∃𝑤(𝑦𝑤𝑤𝑧) ↔ ∃𝑥(𝑦𝑥𝑥𝑧)))
3029adantr 481 . . . . . . . 8 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∃𝑤(𝑦𝑤𝑤𝑧) ↔ ∃𝑥(𝑦𝑥𝑥𝑧)))
3125adantl 482 . . . . . . . 8 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑦𝑤𝑦𝑥))
3230, 31imbi12d 345 . . . . . . 7 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((∃𝑤(𝑦𝑤𝑤𝑧) → 𝑦𝑤) ↔ (∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)))
3324, 32albid 2215 . . . . . 6 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∀𝑦(∃𝑤(𝑦𝑤𝑤𝑧) → 𝑦𝑤) ↔ ∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)))
3433ex 413 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → (∀𝑦(∃𝑤(𝑦𝑤𝑤𝑧) → 𝑦𝑤) ↔ ∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))))
354, 19, 34cbvexd 2408 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∃𝑤𝑦(∃𝑤(𝑦𝑤𝑤𝑧) → 𝑦𝑤) ↔ ∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)))
361, 35mpbii 232 . . 3 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
3736ex 413 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → ∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)))
38 nfae 2433 . . . 4 𝑦𝑥 𝑥 = 𝑦
39 nfae 2433 . . . . . 6 𝑥𝑥 𝑥 = 𝑦
40 elirrv 9355 . . . . . . . . 9 ¬ 𝑦𝑦
41 elequ2 2121 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑦𝑥𝑦𝑦))
4240, 41mtbiri 327 . . . . . . . 8 (𝑥 = 𝑦 → ¬ 𝑦𝑥)
4342intnanrd 490 . . . . . . 7 (𝑥 = 𝑦 → ¬ (𝑦𝑥𝑥𝑧))
4443sps 2178 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → ¬ (𝑦𝑥𝑥𝑧))
4539, 44nexd 2214 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ¬ ∃𝑥(𝑦𝑥𝑥𝑧))
4645pm2.21d 121 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
4738, 46alrimi 2206 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
484719.8ad 2175 . 2 (∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
49 nfae 2433 . . . 4 𝑦𝑥 𝑥 = 𝑧
50 nfae 2433 . . . . . 6 𝑥𝑥 𝑥 = 𝑧
51 elirrv 9355 . . . . . . . . 9 ¬ 𝑧𝑧
52 elequ1 2113 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝑧𝑧𝑧))
5351, 52mtbiri 327 . . . . . . . 8 (𝑥 = 𝑧 → ¬ 𝑥𝑧)
5453intnand 489 . . . . . . 7 (𝑥 = 𝑧 → ¬ (𝑦𝑥𝑥𝑧))
5554sps 2178 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → ¬ (𝑦𝑥𝑥𝑧))
5650, 55nexd 2214 . . . . 5 (∀𝑥 𝑥 = 𝑧 → ¬ ∃𝑥(𝑦𝑥𝑥𝑧))
5756pm2.21d 121 . . . 4 (∀𝑥 𝑥 = 𝑧 → (∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
5849, 57alrimi 2206 . . 3 (∀𝑥 𝑥 = 𝑧 → ∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
595819.8ad 2175 . 2 (∀𝑥 𝑥 = 𝑧 → ∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
6037, 48, 59pm2.61ii 183 1 𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537  wex 1782  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-eprel 5495  df-fr 5544
This theorem is referenced by:  zfcndun  10371  axunprim  33644
  Copyright terms: Public domain W3C validator