![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version |
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm4.81 393 orc 867 pm2.82 977 dedlema 1045 cases2ALT 1048 eqneqall 2949 pm2.24nel 3057 ralf0 4520 preqsnd 4864 ordnbtwn 6479 suppimacnv 8198 ressuppss 8207 ressuppssdif 8209 infssuni 9384 axpowndlem1 10635 ltlen 11360 znnn0nn 12727 elfzonlteqm1 13777 injresinjlem 13823 addmodlteq 13984 ssnn0fi 14023 hasheqf1oi 14387 hashfzp1 14467 swrdnd2 14690 swrdnd0 14692 swrdccat3blem 14774 repswswrd 14819 dvdsaddre2b 16341 dfgcd2 16580 prm23ge5 16849 oddprmdvds 16937 mdegle0 26131 2lgsoddprm 27475 nb3grprlem1 29412 4cyclusnfrgr 30321 broutsideof2 36104 meran1 36394 bj-andnotim 36571 contrd 38084 pell1qrgaplem 42861 clsk1indlem3 44033 pm2.43cbi 44516 afv2orxorb 47178 requad2 47548 zeo2ALTV 47596 ztprmneprm 48192 line2xlem 48603 |
Copyright terms: Public domain | W3C validator |