| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm4.81 393 orc 867 pm2.82 977 dedlema 1045 cases2ALT 1048 eqneqall 2944 pm2.24nel 3050 ralf0 4494 preqsnd 4840 ordnbtwn 6452 suppimacnv 8178 ressuppss 8187 ressuppssdif 8189 infssuni 9363 axpowndlem1 10616 ltlen 11341 znnn0nn 12709 elfzonlteqm1 13762 injresinjlem 13808 addmodlteq 13969 ssnn0fi 14008 hasheqf1oi 14374 hashfzp1 14454 swrdnd2 14678 swrdnd0 14680 swrdccat3blem 14762 repswswrd 14807 dvdsaddre2b 16331 dfgcd2 16570 prm23ge5 16840 oddprmdvds 16928 mdegle0 26039 2lgsoddprm 27384 nb3grprlem1 29364 4cyclusnfrgr 30278 broutsideof2 36145 meran1 36434 bj-andnotim 36611 contrd 38126 pell1qrgaplem 42871 clsk1indlem3 44042 pm2.43cbi 44518 afv2orxorb 47237 requad2 47617 zeo2ALTV 47665 ztprmneprm 48302 line2xlem 48713 |
| Copyright terms: Public domain | W3C validator |