Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version |
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm4.81 394 orc 864 pm2.82 973 dedlema 1043 cases2ALT 1046 eqneqall 2954 elnelall 3062 ralf0 4444 preqsnd 4789 ordnbtwn 6356 suppimacnv 7990 ressuppss 7999 ressuppssdif 8001 infssuni 9110 axpowndlem1 10353 ltlen 11076 znnn0nn 12433 elfzonlteqm1 13463 injresinjlem 13507 addmodlteq 13666 ssnn0fi 13705 hasheqf1oi 14066 hashfzp1 14146 swrdnd2 14368 swrdnd0 14370 swrdccat3blem 14452 repswswrd 14497 dvdsaddre2b 16016 dfgcd2 16254 prm23ge5 16516 oddprmdvds 16604 mdegle0 25242 2lgsoddprm 26564 nb3grprlem1 27747 4cyclusnfrgr 28656 broutsideof2 34424 meran1 34600 bj-andnotim 34770 contrd 36255 pell1qrgaplem 40695 clsk1indlem3 41653 pm2.43cbi 42138 afv2orxorb 44720 requad2 45075 zeo2ALTV 45123 ztprmneprm 45683 line2xlem 46099 |
Copyright terms: Public domain | W3C validator |