| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm4.81 393 orc 867 pm2.82 977 dedlema 1045 cases2ALT 1048 eqneqall 2936 pm2.24nel 3042 ralf0 4477 preqsnd 4823 ordnbtwn 6427 suppimacnv 8153 ressuppss 8162 ressuppssdif 8164 infssuni 9297 axpowndlem1 10550 ltlen 11275 znnn0nn 12645 elfzonlteqm1 13702 injresinjlem 13748 addmodlteq 13911 ssnn0fi 13950 hasheqf1oi 14316 hashfzp1 14396 swrdnd2 14620 swrdnd0 14622 swrdccat3blem 14704 repswswrd 14749 dvdsaddre2b 16277 dfgcd2 16516 prm23ge5 16786 oddprmdvds 16874 mdegle0 25982 2lgsoddprm 27327 nb3grprlem1 29307 4cyclusnfrgr 30221 broutsideof2 36110 meran1 36399 bj-andnotim 36576 contrd 38091 pell1qrgaplem 42861 clsk1indlem3 44032 pm2.43cbi 44508 afv2orxorb 47229 requad2 47624 zeo2ALTV 47672 ztprmneprm 48335 line2xlem 48742 |
| Copyright terms: Public domain | W3C validator |