| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm4.81 393 orc 867 pm2.82 977 dedlema 1045 cases2ALT 1048 eqneqall 2936 pm2.24nel 3042 ralf0 4467 preqsnd 4813 ordnbtwn 6406 suppimacnv 8114 ressuppss 8123 ressuppssdif 8125 infssuni 9255 axpowndlem1 10510 ltlen 11235 znnn0nn 12605 elfzonlteqm1 13662 injresinjlem 13708 addmodlteq 13871 ssnn0fi 13910 hasheqf1oi 14276 hashfzp1 14356 swrdnd2 14580 swrdnd0 14582 swrdccat3blem 14663 repswswrd 14708 dvdsaddre2b 16236 dfgcd2 16475 prm23ge5 16745 oddprmdvds 16833 mdegle0 25998 2lgsoddprm 27343 nb3grprlem1 29343 4cyclusnfrgr 30254 broutsideof2 36095 meran1 36384 bj-andnotim 36561 contrd 38076 pell1qrgaplem 42846 clsk1indlem3 44016 pm2.43cbi 44492 afv2orxorb 47213 requad2 47608 zeo2ALTV 47656 ztprmneprm 48332 line2xlem 48739 |
| Copyright terms: Public domain | W3C validator |