| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm4.81 393 orc 867 pm2.82 977 dedlema 1045 cases2ALT 1048 eqneqall 2939 pm2.24nel 3045 ralf0 4464 preqsnd 4811 ordnbtwn 6401 suppimacnv 8104 ressuppss 8113 ressuppssdif 8115 infssuni 9230 axpowndlem1 10485 ltlen 11211 znnn0nn 12581 elfzonlteqm1 13638 injresinjlem 13687 addmodlteq 13850 ssnn0fi 13889 hasheqf1oi 14255 hashfzp1 14335 swrdnd2 14560 swrdnd0 14562 swrdccat3blem 14643 repswswrd 14688 dvdsaddre2b 16215 dfgcd2 16454 prm23ge5 16724 oddprmdvds 16812 mdegle0 26007 2lgsoddprm 27352 nb3grprlem1 29356 4cyclusnfrgr 30267 broutsideof2 36155 meran1 36444 bj-andnotim 36621 contrd 38136 pell1qrgaplem 42905 clsk1indlem3 44075 pm2.43cbi 44550 afv2orxorb 47258 requad2 47653 zeo2ALTV 47701 ztprmneprm 48377 line2xlem 48784 |
| Copyright terms: Public domain | W3C validator |