![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version |
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm4.81 393 orc 866 pm2.82 976 dedlema 1046 cases2ALT 1049 eqneqall 2957 pm2.24nel 3065 ralf0 4537 preqsnd 4883 ordnbtwn 6488 suppimacnv 8215 ressuppss 8224 ressuppssdif 8226 infssuni 9414 axpowndlem1 10666 ltlen 11391 znnn0nn 12754 elfzonlteqm1 13792 injresinjlem 13837 addmodlteq 13997 ssnn0fi 14036 hasheqf1oi 14400 hashfzp1 14480 swrdnd2 14703 swrdnd0 14705 swrdccat3blem 14787 repswswrd 14832 dvdsaddre2b 16355 dfgcd2 16593 prm23ge5 16862 oddprmdvds 16950 mdegle0 26136 2lgsoddprm 27478 nb3grprlem1 29415 4cyclusnfrgr 30324 broutsideof2 36086 meran1 36377 bj-andnotim 36554 contrd 38057 pell1qrgaplem 42829 clsk1indlem3 44005 pm2.43cbi 44489 afv2orxorb 47143 requad2 47497 zeo2ALTV 47545 ztprmneprm 48072 line2xlem 48487 |
Copyright terms: Public domain | W3C validator |