![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version |
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm4.81 393 orc 864 pm2.82 972 dedlema 1042 cases2ALT 1045 eqneqall 2943 pm2.24nel 3051 ralf0 4505 preqsnd 4851 ordnbtwn 6447 suppimacnv 8153 ressuppss 8162 ressuppssdif 8164 infssuni 9339 axpowndlem1 10588 ltlen 11312 znnn0nn 12670 elfzonlteqm1 13705 injresinjlem 13749 addmodlteq 13908 ssnn0fi 13947 hasheqf1oi 14308 hashfzp1 14388 swrdnd2 14602 swrdnd0 14604 swrdccat3blem 14686 repswswrd 14731 dvdsaddre2b 16247 dfgcd2 16485 prm23ge5 16747 oddprmdvds 16835 mdegle0 25935 2lgsoddprm 27265 nb3grprlem1 29106 4cyclusnfrgr 30014 broutsideof2 35589 meran1 35786 bj-andnotim 35956 contrd 37455 pell1qrgaplem 42100 clsk1indlem3 43283 pm2.43cbi 43768 afv2orxorb 46421 requad2 46776 zeo2ALTV 46824 ztprmneprm 47212 line2xlem 47627 |
Copyright terms: Public domain | W3C validator |