| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm4.81 393 orc 867 pm2.82 977 dedlema 1045 cases2ALT 1048 eqneqall 2937 pm2.24nel 3043 ralf0 4480 preqsnd 4826 ordnbtwn 6430 suppimacnv 8156 ressuppss 8165 ressuppssdif 8167 infssuni 9304 axpowndlem1 10557 ltlen 11282 znnn0nn 12652 elfzonlteqm1 13709 injresinjlem 13755 addmodlteq 13918 ssnn0fi 13957 hasheqf1oi 14323 hashfzp1 14403 swrdnd2 14627 swrdnd0 14629 swrdccat3blem 14711 repswswrd 14756 dvdsaddre2b 16284 dfgcd2 16523 prm23ge5 16793 oddprmdvds 16881 mdegle0 25989 2lgsoddprm 27334 nb3grprlem1 29314 4cyclusnfrgr 30228 broutsideof2 36117 meran1 36406 bj-andnotim 36583 contrd 38098 pell1qrgaplem 42868 clsk1indlem3 44039 pm2.43cbi 44515 afv2orxorb 47233 requad2 47628 zeo2ALTV 47676 ztprmneprm 48339 line2xlem 48746 |
| Copyright terms: Public domain | W3C validator |