Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version |
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm4.81 393 orc 863 pm2.82 972 dedlema 1042 cases2ALT 1045 eqneqall 2953 elnelall 3061 ralf0 4441 preqsnd 4786 ordnbtwn 6341 suppimacnv 7961 ressuppss 7970 ressuppssdif 7972 infssuni 9040 axpowndlem1 10284 ltlen 11006 znnn0nn 12362 elfzonlteqm1 13391 injresinjlem 13435 addmodlteq 13594 ssnn0fi 13633 hasheqf1oi 13994 hashfzp1 14074 swrdnd2 14296 swrdnd0 14298 swrdccat3blem 14380 repswswrd 14425 dvdsaddre2b 15944 dfgcd2 16182 prm23ge5 16444 oddprmdvds 16532 mdegle0 25147 2lgsoddprm 26469 nb3grprlem1 27650 4cyclusnfrgr 28557 broutsideof2 34351 meran1 34527 bj-andnotim 34697 contrd 36182 pell1qrgaplem 40611 clsk1indlem3 41542 pm2.43cbi 42027 afv2orxorb 44607 requad2 44963 zeo2ALTV 45011 ztprmneprm 45571 line2xlem 45987 |
Copyright terms: Public domain | W3C validator |