| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm4.81 393 orc 867 pm2.82 977 dedlema 1045 cases2ALT 1048 eqneqall 2940 pm2.24nel 3046 ralf0 4463 preqsnd 4810 ordnbtwn 6406 suppimacnv 8110 ressuppss 8119 ressuppssdif 8121 infssuni 9237 axpowndlem1 10495 ltlen 11221 znnn0nn 12590 elfzonlteqm1 13643 injresinjlem 13692 addmodlteq 13855 ssnn0fi 13894 hasheqf1oi 14260 hashfzp1 14340 swrdnd2 14565 swrdnd0 14567 swrdccat3blem 14648 repswswrd 14693 dvdsaddre2b 16220 dfgcd2 16459 prm23ge5 16729 oddprmdvds 16817 mdegle0 26010 2lgsoddprm 27355 nb3grprlem1 29360 4cyclusnfrgr 30274 broutsideof2 36187 meran1 36476 bj-andnotim 36653 contrd 38157 pell1qrgaplem 42990 clsk1indlem3 44160 pm2.43cbi 44635 afv2orxorb 47352 requad2 47747 zeo2ALTV 47795 ztprmneprm 48471 line2xlem 48878 |
| Copyright terms: Public domain | W3C validator |