| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm4.81 393 orc 867 pm2.82 977 dedlema 1045 cases2ALT 1048 eqneqall 2950 pm2.24nel 3058 ralf0 4513 preqsnd 4858 ordnbtwn 6476 suppimacnv 8200 ressuppss 8209 ressuppssdif 8211 infssuni 9387 axpowndlem1 10638 ltlen 11363 znnn0nn 12731 elfzonlteqm1 13781 injresinjlem 13827 addmodlteq 13988 ssnn0fi 14027 hasheqf1oi 14391 hashfzp1 14471 swrdnd2 14694 swrdnd0 14696 swrdccat3blem 14778 repswswrd 14823 dvdsaddre2b 16345 dfgcd2 16584 prm23ge5 16854 oddprmdvds 16942 mdegle0 26117 2lgsoddprm 27461 nb3grprlem1 29398 4cyclusnfrgr 30312 broutsideof2 36124 meran1 36413 bj-andnotim 36590 contrd 38105 pell1qrgaplem 42889 clsk1indlem3 44061 pm2.43cbi 44543 afv2orxorb 47245 requad2 47615 zeo2ALTV 47663 ztprmneprm 48268 line2xlem 48679 |
| Copyright terms: Public domain | W3C validator |