![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version |
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm4.81 394 orc 865 pm2.82 974 dedlema 1044 cases2ALT 1047 eqneqall 2951 pm2.24nel 3059 ralf0 4512 preqsnd 4858 ordnbtwn 6454 suppimacnv 8155 ressuppss 8164 ressuppssdif 8166 infssuni 9339 axpowndlem1 10588 ltlen 11311 znnn0nn 12669 elfzonlteqm1 13704 injresinjlem 13748 addmodlteq 13907 ssnn0fi 13946 hasheqf1oi 14307 hashfzp1 14387 swrdnd2 14601 swrdnd0 14603 swrdccat3blem 14685 repswswrd 14730 dvdsaddre2b 16246 dfgcd2 16484 prm23ge5 16744 oddprmdvds 16832 mdegle0 25586 2lgsoddprm 26908 nb3grprlem1 28626 4cyclusnfrgr 29534 broutsideof2 35082 meran1 35284 bj-andnotim 35454 contrd 36953 pell1qrgaplem 41596 clsk1indlem3 42779 pm2.43cbi 43264 afv2orxorb 45922 requad2 46277 zeo2ALTV 46325 ztprmneprm 46976 line2xlem 47392 |
Copyright terms: Public domain | W3C validator |