![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version |
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm4.81 395 orc 866 pm2.82 975 dedlema 1045 cases2ALT 1048 eqneqall 2952 pm2.24nel 3060 ralf0 4514 preqsnd 4860 ordnbtwn 6458 suppimacnv 8159 ressuppss 8168 ressuppssdif 8170 infssuni 9343 axpowndlem1 10592 ltlen 11315 znnn0nn 12673 elfzonlteqm1 13708 injresinjlem 13752 addmodlteq 13911 ssnn0fi 13950 hasheqf1oi 14311 hashfzp1 14391 swrdnd2 14605 swrdnd0 14607 swrdccat3blem 14689 repswswrd 14734 dvdsaddre2b 16250 dfgcd2 16488 prm23ge5 16748 oddprmdvds 16836 mdegle0 25595 2lgsoddprm 26919 nb3grprlem1 28637 4cyclusnfrgr 29545 broutsideof2 35094 meran1 35296 bj-andnotim 35466 contrd 36965 pell1qrgaplem 41611 clsk1indlem3 42794 pm2.43cbi 43279 afv2orxorb 45936 requad2 46291 zeo2ALTV 46339 ztprmneprm 47023 line2xlem 47439 |
Copyright terms: Public domain | W3C validator |