MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpownd Structured version   Visualization version   GIF version

Theorem axpownd 10542
Description: A version of the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 4-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
axpownd 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))

Proof of Theorem axpownd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 axpowndlem4 10541 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))
2 axpowndlem1 10538 . . 3 (∀𝑥 𝑥 = 𝑦 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
32aecoms 2427 . 2 (∀𝑦 𝑦 = 𝑥 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
42a1d 25 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))
5 nfnae 2433 . . . . . . . 8 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
6 nfae 2432 . . . . . . . 8 𝑦𝑦 𝑦 = 𝑧
75, 6nfan 1903 . . . . . . 7 𝑦(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑦 𝑦 = 𝑧)
8 el 5395 . . . . . . . . . . . . 13 𝑤 𝑥𝑤
9 nfcvf2 2934 . . . . . . . . . . . . . . 15 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
10 nfcvd 2905 . . . . . . . . . . . . . . 15 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑤)
119, 10nfeld 2915 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑥𝑤)
12 elequ2 2122 . . . . . . . . . . . . . . 15 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
1312a1i 11 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦)))
145, 11, 13cbvexd 2407 . . . . . . . . . . . . 13 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑤 𝑥𝑤 ↔ ∃𝑦 𝑥𝑦))
158, 14mpbii 232 . . . . . . . . . . . 12 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑦 𝑥𝑦)
161519.8ad 2176 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦 𝑥𝑦)
17 df-ex 1783 . . . . . . . . . . 11 (∃𝑥𝑦 𝑥𝑦 ↔ ¬ ∀𝑥 ¬ ∃𝑦 𝑥𝑦)
1816, 17sylib 217 . . . . . . . . . 10 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 ¬ ∃𝑦 𝑥𝑦)
1918adantr 482 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑦 𝑦 = 𝑧) → ¬ ∀𝑥 ¬ ∃𝑦 𝑥𝑦)
20 biidd 262 . . . . . . . . . . . . . 14 (∀𝑦 𝑦 = 𝑧 → (¬ 𝑥𝑦 ↔ ¬ 𝑥𝑦))
2120dral1 2438 . . . . . . . . . . . . 13 (∀𝑦 𝑦 = 𝑧 → (∀𝑦 ¬ 𝑥𝑦 ↔ ∀𝑧 ¬ 𝑥𝑦))
22 alnex 1784 . . . . . . . . . . . . 13 (∀𝑦 ¬ 𝑥𝑦 ↔ ¬ ∃𝑦 𝑥𝑦)
23 alnex 1784 . . . . . . . . . . . . 13 (∀𝑧 ¬ 𝑥𝑦 ↔ ¬ ∃𝑧 𝑥𝑦)
2421, 22, 233bitr3g 313 . . . . . . . . . . . 12 (∀𝑦 𝑦 = 𝑧 → (¬ ∃𝑦 𝑥𝑦 ↔ ¬ ∃𝑧 𝑥𝑦))
25 nd2 10529 . . . . . . . . . . . . 13 (∀𝑦 𝑦 = 𝑧 → ¬ ∀𝑦 𝑥𝑧)
26 mtt 365 . . . . . . . . . . . . 13 (¬ ∀𝑦 𝑥𝑧 → (¬ ∃𝑧 𝑥𝑦 ↔ (∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧)))
2725, 26syl 17 . . . . . . . . . . . 12 (∀𝑦 𝑦 = 𝑧 → (¬ ∃𝑧 𝑥𝑦 ↔ (∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧)))
2824, 27bitrd 279 . . . . . . . . . . 11 (∀𝑦 𝑦 = 𝑧 → (¬ ∃𝑦 𝑥𝑦 ↔ (∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧)))
2928dral2 2437 . . . . . . . . . 10 (∀𝑦 𝑦 = 𝑧 → (∀𝑥 ¬ ∃𝑦 𝑥𝑦 ↔ ∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧)))
3029adantl 483 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑦 𝑦 = 𝑧) → (∀𝑥 ¬ ∃𝑦 𝑥𝑦 ↔ ∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧)))
3119, 30mtbid 324 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑦 𝑦 = 𝑧) → ¬ ∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧))
3231pm2.21d 121 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑦 𝑦 = 𝑧) → (∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
337, 32alrimi 2207 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑦 𝑦 = 𝑧) → ∀𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
343319.8ad 2176 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑦 𝑦 = 𝑧) → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
3534a1d 25 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑦 𝑦 = 𝑧) → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
3635ex 414 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))
374, 36pm2.61i 182 . 2 (∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
381, 3, 37pm2.61ii 183 1 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wal 1540  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-13 2371  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-reg 9533
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-pw 4563  df-sn 4588  df-pr 4590
This theorem is referenced by:  zfcndpow  10557  axpowprim  34332
  Copyright terms: Public domain W3C validator