| Metamath
Proof Explorer Theorem List (p. 106 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | iundomg 10501* | An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) & ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) | ||
| Theorem | iundom 10502* | An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) | ||
| Theorem | unidom 10503* | An upper bound for the cardinality of a union. Theorem 10.47 of [TakeutiZaring] p. 98. (Contributed by NM, 25-Mar-2006.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ 𝐵) → ∪ 𝐴 ≼ (𝐴 × 𝐵)) | ||
| Theorem | uniimadom 10504* | An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | ||
| Theorem | uniimadomf 10505* | An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 10504 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | ||
| Theorem | cardval 10506* | The value of the cardinal number function. Definition 10.4 of [TakeutiZaring] p. 85. See cardval2 9951 for a simpler version of its value. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} | ||
| Theorem | cardid 10507 | Any set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (card‘𝐴) ≈ 𝐴 | ||
| Theorem | cardidg 10508 | Any set is equinumerous to its cardinal number. Closed theorem form of cardid 10507. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝐴 ∈ 𝐵 → (card‘𝐴) ≈ 𝐴) | ||
| Theorem | cardidd 10509 | Any set is equinumerous to its cardinal number. Deduction form of cardid 10507. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (card‘𝐴) ≈ 𝐴) | ||
| Theorem | cardf 10510 | The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ card:V⟶On | ||
| Theorem | carden 10511 |
Two sets are equinumerous iff their cardinal numbers are equal. This
important theorem expresses the essential concept behind
"cardinality" or
"size". This theorem appears as Proposition 10.10 of [TakeutiZaring]
p. 85, Theorem 7P of [Enderton] p. 197,
and Theorem 9 of [Suppes] p. 242
(among others). The Axiom of Choice is required for its proof. Related
theorems are hasheni 14320 and the finite-set-only hashen 14319.
This theorem is also known as Hume's Principle. Gottlob Frege's two-volume Grundgesetze der Arithmetik used his Basic Law V to prove this theorem. Unfortunately Basic Law V caused Frege's system to be inconsistent because it was subject to Russell's paradox (see ru 3754). Later scholars have found that Frege primarily used Basic Law V to Hume's Principle. If Basic Law V is replaced by Hume's Principle in Frege's system, much of Frege's work is restored. Grundgesetze der Arithmetik, once Basic Law V is replaced, proves "Frege's theorem" (the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle). See https://plato.stanford.edu/entries/frege-theorem 3754. We take a different approach, using first-order logic and ZFC, to prove the Peano axioms of arithmetic. The theory of cardinality can also be developed without AC by introducing "card" as a primitive notion and stating this theorem as an axiom, as is done with the axiom for cardinal numbers in [Suppes] p. 111. Finally, if we allow the Axiom of Regularity, we can avoid AC by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank (see karden 9855). (Contributed by NM, 22-Oct-2003.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) | ||
| Theorem | cardeq0 10512 | Only the empty set has cardinality zero. (Contributed by NM, 23-Apr-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) | ||
| Theorem | unsnen 10513 | Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) | ||
| Theorem | carddom 10514 | Two sets have the dominance relationship iff their cardinalities have the subset relationship. Equation i of [Quine] p. 232. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) | ||
| Theorem | cardsdom 10515 | Two sets have the strict dominance relationship iff their cardinalities have the membership relationship. Corollary 19.7(2) of [Eisenberg] p. 310. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ≺ 𝐵)) | ||
| Theorem | domtri 10516 | Trichotomy law for dominance and strict dominance. This theorem is equivalent to the Axiom of Choice. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
| Theorem | entric 10517 | Trichotomy of equinumerosity and strict dominance. This theorem is equivalent to the Axiom of Choice. Theorem 8 of [Suppes] p. 242. (Contributed by NM, 4-Jan-2004.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ∨ 𝐵 ≺ 𝐴)) | ||
| Theorem | entri2 10518 | Trichotomy of dominance and strict dominance. (Contributed by NM, 4-Jan-2004.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≺ 𝐴)) | ||
| Theorem | entri3 10519 | Trichotomy of dominance. This theorem is equivalent to the Axiom of Choice. Part of Proposition 4.42(d) of [Mendelson] p. 275. (Contributed by NM, 4-Jan-2004.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴)) | ||
| Theorem | sdomsdomcard 10520 | A set strictly dominates iff its cardinal strictly dominates. (Contributed by NM, 30-Oct-2003.) |
| ⊢ (𝐴 ≺ 𝐵 ↔ 𝐴 ≺ (card‘𝐵)) | ||
| Theorem | canth3 10521 | Cantor's theorem in terms of cardinals. This theorem tells us that no matter how large a cardinal number is, there is a still larger cardinal number. Theorem 18.12 of [Monk1] p. 133. (Contributed by NM, 5-Nov-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → (card‘𝐴) ∈ (card‘𝒫 𝐴)) | ||
| Theorem | infxpidm 10522 | Every infinite class is equinumerous to its Cartesian square. This theorem, which is equivalent to the axiom of choice over ZF, provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. This is a corollary of infxpen 9974 (used via infxpidm2 9977). (Contributed by NM, 17-Sep-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
| ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | ondomon 10523* | The class of ordinals dominated by a given set is an ordinal. Theorem 56 of [Suppes] p. 227. This theorem can be proved without the axiom of choice, see hartogs 9504. (Contributed by NM, 7-Nov-2003.) (Proof modification is discouraged.) Use hartogs 9504 instead. (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) | ||
| Theorem | cardmin 10524* | The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | ||
| Theorem | ficard 10525 | A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) | ||
| Theorem | infinf 10526 | Equivalence between two infiniteness criteria for sets. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴)) | ||
| Theorem | unirnfdomd 10527 | The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐹:𝑇⟶Fin) & ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) | ||
| Theorem | konigthlem 10528* | Lemma for konigth 10529. (Contributed by Mario Carneiro, 22-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) & ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) & ⊢ 𝐷 = (𝑖 ∈ 𝐴 ↦ (𝑎 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑎)‘𝑖))) & ⊢ 𝐸 = (𝑖 ∈ 𝐴 ↦ (𝑒‘𝑖)) ⇒ ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) | ||
| Theorem | konigth 10529* | Konig's Theorem. If 𝑚(𝑖) ≺ 𝑛(𝑖) for all 𝑖 ∈ 𝐴, then Σ𝑖 ∈ 𝐴𝑚(𝑖) ≺ ∏𝑖 ∈ 𝐴𝑛(𝑖), where the sums and products stand in for disjoint union and infinite cartesian product. The version here is proven with unions rather than disjoint unions for convenience, but the version with disjoint unions is clearly a special case of this version. The Axiom of Choice is needed for this proof, but it contains AC as a simple corollary (letting 𝑚(𝑖) = ∅, this theorem says that an infinite cartesian product of nonempty sets is nonempty), so this is an AC equivalent. Theorem 11.26 of [TakeutiZaring] p. 107. (Contributed by Mario Carneiro, 22-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) & ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) ⇒ ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) | ||
| Theorem | alephsucpw 10530 | The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10636 or gchaleph2 10632.) (Contributed by NM, 27-Aug-2005.) |
| ⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) | ||
| Theorem | aleph1 10531 | The set exponentiation of 2 to the aleph-zero has cardinality of at least aleph-one. (If we were to assume the Continuum Hypothesis, their cardinalities would be the same.) (Contributed by NM, 7-Jul-2004.) |
| ⊢ (ℵ‘1o) ≼ (2o ↑m (ℵ‘∅)) | ||
| Theorem | alephval2 10532* | An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.) |
| ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (ℵ‘𝑦) ≺ 𝑥}) | ||
| Theorem | dominfac 10533 | A nonempty set that is a subset of its union is infinite. This version is proved from ax-ac 10419. See dominf 10405 for a version proved from ax-cc 10395. (Contributed by NM, 25-Mar-2007.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) | ||
| Theorem | iunctb 10534* | The countable union of countable sets is countable (indexed union version of unictb 10535). (Contributed by Mario Carneiro, 18-Jan-2014.) |
| ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) | ||
| Theorem | unictb 10535* | The countable union of countable sets is countable. Theorem 6Q of [Enderton] p. 159. See iunctb 10534 for indexed union version. (Contributed by NM, 26-Mar-2006.) |
| ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ω) → ∪ 𝐴 ≼ ω) | ||
| Theorem | infmap 10536* | An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. (Contributed by NM, 1-Oct-2004.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ↑m 𝐵) ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) | ||
| Theorem | alephadd 10537 | The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) | ||
| Theorem | alephmul 10538 | The product of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) | ||
| Theorem | alephexp1 10539 | An exponentiation law for alephs. Lemma 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ (2o ↑m (ℵ‘𝐵))) | ||
| Theorem | alephsuc3 10540* | An alternate representation of a successor aleph. Compare alephsuc 10028 and alephsuc2 10040. Equality can be obtained by taking the card of the right-hand side then using alephcard 10030 and carden 10511. (Contributed by NM, 23-Oct-2004.) |
| ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) | ||
| Theorem | alephexp2 10541* | An expression equinumerous to 2 to an aleph power. The proof equates the two laws for cardinal exponentiation alephexp1 10539 (which works if the base is less than or equal to the exponent) and infmap 10536 (which works if the exponent is less than or equal to the base). They can be equated only when the base is equal to the exponent, and this is the result. (Contributed by NM, 23-Oct-2004.) |
| ⊢ (𝐴 ∈ On → (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) | ||
| Theorem | alephreg 10542 | A successor aleph is regular. Theorem 11.15 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.) |
| ⊢ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) | ||
| Theorem | pwcfsdom 10543* | A corollary of Konig's Theorem konigth 10529. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.) |
| ⊢ 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑦))) ⇒ ⊢ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) | ||
| Theorem | cfpwsdom 10544 | A corollary of Konig's Theorem konigth 10529. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (2o ≼ 𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑m (ℵ‘𝐴))))) | ||
| Theorem | alephom 10545 | From canth2 9100, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 10529 (in the form of cfpwsdom 10544), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.) |
| ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) | ||
| Theorem | smobeth 10546 | The beth function is strictly monotone. This function is not strictly the beth function, but rather bethA is the same as (card‘(𝑅1‘(ω +o 𝐴))), since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 2-Jun-2015.) |
| ⊢ Smo (card ∘ 𝑅1) | ||
| Theorem | nd1 10547 | A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) | ||
| Theorem | nd2 10548 | A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧 ∈ 𝑦) | ||
| Theorem | nd3 10549 | A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) | ||
| Theorem | nd4 10550 | A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦 ∈ 𝑥) | ||
| Theorem | axextnd 10551 | A version of the Axiom of Extensionality with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 14-Aug-2003.) (New usage is discouraged.) |
| ⊢ ∃𝑥((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | ||
| Theorem | axrepndlem1 10552* | Lemma for the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | ||
| Theorem | axrepndlem2 10553 | Lemma for the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 2-Jan-2002.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) (New usage is discouraged.) |
| ⊢ (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | ||
| Theorem | axrepnd 10554 | A version of the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
| ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | ||
| Theorem | axunndlem1 10555* | Lemma for the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axunnd 10556 | A version of the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axpowndlem1 10557 | Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | ||
| Theorem | axpowndlem2 10558* | Lemma for the Axiom of Power Sets with no distinct variable conditions. Revised to remove a redundant antecedent from the consequence. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) (Revised and shortened by Wolf Lammen, 9-Jun-2019.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | ||
| Theorem | axpowndlem3 10559* | Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 4-Jan-2002.) (Revised by Mario Carneiro, 10-Dec-2016.) (Proof shortened by Wolf Lammen, 10-Jun-2019.) (New usage is discouraged.) |
| ⊢ (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | ||
| Theorem | axpowndlem4 10560 | Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)))) | ||
| Theorem | axpownd 10561 | A version of the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 4-Jan-2002.) (New usage is discouraged.) |
| ⊢ (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | ||
| Theorem | axregndlem1 10562 | Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | ||
| Theorem | axregndlem2 10563* | Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
| Theorem | axregnd 10564 | A version of the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Wolf Lammen, 18-Aug-2019.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
| Theorem | axinfndlem1 10565* | Lemma for the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.) |
| ⊢ (∀𝑥 𝑦 ∈ 𝑧 → ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | ||
| Theorem | axinfnd 10566 | A version of the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.) |
| ⊢ ∃𝑥(𝑦 ∈ 𝑧 → (𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | ||
| Theorem | axacndlem1 10567 | Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
| Theorem | axacndlem2 10568 | Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
| Theorem | axacndlem3 10569 | Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑦 𝑦 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
| Theorem | axacndlem4 10570* | Lemma for the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
| ⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
| Theorem | axacndlem5 10571* | Lemma for the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
| ⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
| Theorem | axacnd 10572 | A version of the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
| ⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
| Theorem | zfcndext 10573* | Axiom of Extensionality ax-ext 2702, reproved from conditionless ZFC version and predicate calculus. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | ||
| Theorem | zfcndrep 10574* | Axiom of Replacement ax-rep 5237, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) | ||
| Theorem | zfcndun 10575* | Axiom of Union ax-un 7714, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfcndpow 10576* | Axiom of Power Sets ax-pow 5323, reproved from conditionless ZFC axioms. The proof uses the "Axiom of Twoness" dtru 5399. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfcndreg 10577* | Axiom of Regularity ax-reg 9552, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | ||
| Theorem | zfcndinf 10578* | Axiom of Infinity ax-inf 9598, reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing Theorem el 5400 in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003.) |
| ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦))) | ||
| Theorem | zfcndac 10579* | Axiom of Choice ax-ac 10419, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) | ||
| Syntax | cgch 10580 | Extend class notation to include the collection of sets that satisfy the GCH. |
| class GCH | ||
| Definition | df-gch 10581* | Define the collection of "GCH-sets", or sets for which the generalized continuum hypothesis holds. In this language the generalized continuum hypothesis can be expressed as GCH = V. A set 𝑥 satisfies the generalized continuum hypothesis if it is finite or there is no set 𝑦 strictly between 𝑥 and its powerset in cardinality. The continuum hypothesis is equivalent to ω ∈ GCH. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | ||
| Theorem | elgch 10582* | Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | ||
| Theorem | fingch 10583 | A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ Fin ⊆ GCH | ||
| Theorem | gchi 10584 | The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) | ||
| Theorem | gchen1 10585 | If 𝐴 ≤ 𝐵 < 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐴 = 𝐵 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≈ 𝐵) | ||
| Theorem | gchen2 10586 | If 𝐴 < 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴) | ||
| Theorem | gchor 10587 | If 𝐴 ≤ 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then either 𝐴 = 𝐵 or 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → (𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴)) | ||
| Theorem | engch 10588 | The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) | ||
| Theorem | gchdomtri 10589 | Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac 10641. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ (𝐴 ⊔ 𝐴) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴)) | ||
| Theorem | fpwwe2cbv 10590* | Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 3-Jun-2015.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} ⇒ ⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} | ||
| Theorem | fpwwe2lem1 10591* | Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} ⇒ ⊢ 𝑊 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) | ||
| Theorem | fpwwe2lem2 10592* | Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 19-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) | ||
| Theorem | fpwwe2lem3 10593* | Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 19-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋𝑊𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑋) → ((◡𝑅 “ {𝐵})𝐹(𝑅 ∩ ((◡𝑅 “ {𝐵}) × (◡𝑅 “ {𝐵})))) = 𝐵) | ||
| Theorem | fpwwe2lem4 10594* | Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) (Proof shortened by Matthew House, 10-Sep-2025.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴) | ||
| Theorem | fpwwe2lem5 10595* | Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑁) & ⊢ (𝜑 → (𝑀 ↾ 𝐵) = (𝑁 ↾ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝐶 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌 ∧ (◡𝑀‘𝐶) = (◡𝑁‘𝐶))) | ||
| Theorem | fpwwe2lem6 10596* | Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑁) & ⊢ (𝜑 → (𝑀 ↾ 𝐵) = (𝑁 ↾ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝐶𝑆(𝑁‘𝐵) ∧ (𝐷𝑅(𝑀‘𝐵) → (𝐶𝑅𝐷 ↔ 𝐶𝑆𝐷)))) | ||
| Theorem | fpwwe2lem7 10597* | Lemma for fpwwe2 10603. Show by induction that the two isometries 𝑀 and 𝑁 agree on their common domain. (Contributed by Mario Carneiro, 15-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → dom 𝑀 ⊆ dom 𝑁) ⇒ ⊢ (𝜑 → 𝑀 = (𝑁 ↾ dom 𝑀)) | ||
| Theorem | fpwwe2lem8 10598* | Lemma for fpwwe2 10603. Given two well-orders 〈𝑋, 𝑅〉 and 〈𝑌, 𝑆〉 of parts of 𝐴, one is an initial segment of the other. (The 𝑂 ⊆ 𝑃 hypothesis is in order to break the symmetry of 𝑋 and 𝑌.) (Contributed by Mario Carneiro, 15-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → dom 𝑀 ⊆ dom 𝑁) ⇒ ⊢ (𝜑 → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋)))) | ||
| Theorem | fpwwe2lem9 10599* | Lemma for fpwwe2 10603. Given two well-orders 〈𝑋, 𝑅〉 and 〈𝑌, 𝑆〉 of parts of 𝐴, one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) ⇒ ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) | ||
| Theorem | fpwwe2lem10 10600* | Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ 𝑋 = ∪ dom 𝑊 ⇒ ⊢ (𝜑 → 𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |