| Metamath
Proof Explorer Theorem List (p. 106 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ac6sf 10501* | Version of ac6 10492 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.) |
| ⊢ Ⅎ𝑦𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | ac6s4 10502* | Generalization of the Axiom of Choice to proper classes. 𝐵 is a collection 𝐵(𝑥) of nonempty, possible proper classes. (Contributed by NM, 29-Sep-2006.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | ||
| Theorem | ac6s5 10503* | Generalization of the Axiom of Choice to proper classes. 𝐵 is a collection 𝐵(𝑥) of nonempty, possible proper classes. Remark after Theorem 10.46 of [TakeutiZaring] p. 98. (Contributed by NM, 27-Mar-2006.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) | ||
| Theorem | ac8 10504* | An Axiom of Choice equivalent. Given a family 𝑥 of mutually disjoint nonempty sets, there exists a set 𝑦 containing exactly one member from each set in the family. Theorem 6M(4) of [Enderton] p. 151. (Contributed by NM, 14-May-2004.) |
| ⊢ ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) | ||
| Theorem | ac9s 10505* | An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. This is a stronger version of the axiom in Enderton, with no existence requirement for the family of classes 𝐵(𝑥) (achieved via the Collection Principle cp 9903). (Contributed by NM, 29-Sep-2006.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) | ||
| Theorem | numthcor 10506* | Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ≺ 𝑥) | ||
| Theorem | weth 10507* | Well-ordering theorem: any set 𝐴 can be well-ordered. This is an equivalent of the Axiom of Choice. Theorem 6 of [Suppes] p. 242. First proved by Ernst Zermelo (the "Z" in ZFC) in 1904. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 We 𝐴) | ||
| Theorem | zorn2lem1 10508* | Lemma for zorn2 10518. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} ⇒ ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) | ||
| Theorem | zorn2lem2 10509* | Lemma for zorn2 10518. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} ⇒ ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) | ||
| Theorem | zorn2lem3 10510* | Lemma for zorn2 10518. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} ⇒ ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) | ||
| Theorem | zorn2lem4 10511* | Lemma for zorn2 10518. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} ⇒ ⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅) | ||
| Theorem | zorn2lem5 10512* | Lemma for zorn2 10518. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} & ⊢ 𝐻 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ⇒ ⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝐹 “ 𝑥) ⊆ 𝐴) | ||
| Theorem | zorn2lem6 10513* | Lemma for zorn2 10518. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} & ⊢ 𝐻 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ⇒ ⊢ (𝑅 Po 𝐴 → (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹 “ 𝑥))) | ||
| Theorem | zorn2lem7 10514* | Lemma for zorn2 10518. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) & ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} & ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} & ⊢ 𝐻 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ⇒ ⊢ ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑠((𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠) → ∃𝑎 ∈ 𝐴 ∀𝑟 ∈ 𝑠 (𝑟𝑅𝑎 ∨ 𝑟 = 𝑎))) → ∃𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎𝑅𝑏) | ||
| Theorem | zorn2g 10515* | Zorn's Lemma of [Monk1] p. 117. This version of zorn2 10518 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤) → ∃𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝑤 (𝑧𝑅𝑥 ∨ 𝑧 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
| Theorem | zorng 10516* | Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 10519 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | zornn0g 10517* | Variant of Zorn's lemma zorng 10516 in which ∅, the union of the empty chain, is not required to be an element of 𝐴. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | zorn2 10518* | Zorn's Lemma of [Monk1] p. 117. This theorem is equivalent to the Axiom of Choice and states that every partially ordered set 𝐴 (with an ordering relation 𝑅) in which every totally ordered subset has an upper bound, contains at least one maximal element. The main proof consists of lemmas zorn2lem1 10508 through zorn2lem7 10514; this final piece mainly changes bound variables to eliminate the hypotheses of zorn2lem7 10514. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝑅 Po 𝐴 ∧ ∀𝑤((𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤) → ∃𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝑤 (𝑧𝑅𝑥 ∨ 𝑧 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
| Theorem | zorn 10519* | Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. This theorem is equivalent to the Axiom of Choice. Theorem 6M of [Enderton] p. 151. See zorn2 10518 for a version with general partial orderings. (Contributed by NM, 12-Aug-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | zornn0 10520* | Variant of Zorn's lemma zorn 10519 in which ∅, the union of the empty chain, is not required to be an element of 𝐴. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | ttukeylem1 10521* | Lemma for ttukey 10530. Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)) | ||
| Theorem | ttukeylem2 10522* | Lemma for ttukey 10530. A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶)) → 𝐷 ∈ 𝐴) | ||
| Theorem | ttukeylem3 10523* | Lemma for ttukey 10530. (Contributed by Mario Carneiro, 11-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ On) → (𝐺‘𝐶) = if(𝐶 = ∪ 𝐶, if(𝐶 = ∅, 𝐵, ∪ (𝐺 “ 𝐶)), ((𝐺‘∪ 𝐶) ∪ if(((𝐺‘∪ 𝐶) ∪ {(𝐹‘∪ 𝐶)}) ∈ 𝐴, {(𝐹‘∪ 𝐶)}, ∅)))) | ||
| Theorem | ttukeylem4 10524* | Lemma for ttukey 10530. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ (𝜑 → (𝐺‘∅) = 𝐵) | ||
| Theorem | ttukeylem5 10525* | Lemma for ttukey 10530. The 𝐺 function forms a (transfinitely long) chain of inclusions. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶 ⊆ 𝐷)) → (𝐺‘𝐶) ⊆ (𝐺‘𝐷)) | ||
| Theorem | ttukeylem6 10526* | Lemma for ttukey 10530. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ suc (card‘(∪ 𝐴 ∖ 𝐵))) → (𝐺‘𝐶) ∈ 𝐴) | ||
| Theorem | ttukeylem7 10527* | Lemma for ttukey 10530. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦)) | ||
| Theorem | ttukey2g 10528* | The Teichmüller-Tukey Lemma ttukey 10530 with a slightly stronger conclusion: we can set up the maximal element of 𝐴 so that it also contains some given 𝐵 ∈ 𝐴 as a subset. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((∪ 𝐴 ∈ dom card ∧ 𝐵 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦)) | ||
| Theorem | ttukeyg 10529* | The Teichmüller-Tukey Lemma ttukey 10530 stated with the "choice" as an antecedent (the hypothesis ∪ 𝐴 ∈ dom card says that ∪ 𝐴 is well-orderable). (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((∪ 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | ttukey 10530* | The Teichmüller-Tukey Lemma, an Axiom of Choice equivalent. If 𝐴 is a nonempty collection of finite character, then 𝐴 has a maximal element with respect to inclusion. Here "finite character" means that 𝑥 ∈ 𝐴 iff every finite subset of 𝑥 is in 𝐴. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
| Theorem | axdclem 10531* | Lemma for axdc 10533. (Contributed by Mario Carneiro, 25-Jan-2013.) |
| ⊢ 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾ ω) ⇒ ⊢ ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹‘𝐾)𝑥(𝐹‘suc 𝐾))) | ||
| Theorem | axdclem2 10532* | Lemma for axdc 10533. Using the full Axiom of Choice, we can construct a choice function 𝑔 on 𝒫 dom 𝑥. From this, we can build a sequence 𝐹 starting at any value 𝑠 ∈ dom 𝑥 by repeatedly applying 𝑔 to the set (𝐹‘𝑥) (where 𝑥 is the value from the previous iteration). (Contributed by Mario Carneiro, 25-Jan-2013.) |
| ⊢ 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾ ω) ⇒ ⊢ (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) | ||
| Theorem | axdc 10533* | This theorem derives ax-dc 10458 using ax-ac 10471 and ax-inf 9650. Thus, AC implies DC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013.) |
| ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) | ||
| Theorem | fodomg 10534 | An onto function implies dominance of domain over range. Lemma 10.20 of [Kunen] p. 30. This theorem uses the axiom of choice ac7g 10486. The axiom of choice is not needed for finite sets, see fodomfi 9320. See also fodomnum 10069. (Contributed by NM, 23-Jul-2004.) (Proof shortened by BJ, 20-May-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | ||
| Theorem | fodom 10535 | An onto function implies dominance of domain over range. (Contributed by NM, 23-Jul-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴) | ||
| Theorem | dmct 10536 | The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) | ||
| Theorem | rnct 10537 | The range of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ (𝐴 ≼ ω → ran 𝐴 ≼ ω) | ||
| Theorem | fodomb 10538* | Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of [TakeutiZaring] p. 93. (Contributed by NM, 29-Jul-2004.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) ↔ (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴)) | ||
| Theorem | wdomac 10539 | When assuming AC, weak and usual dominance coincide. It is not known if this is an AC equivalent. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌) | ||
| Theorem | brdom3 10540* | Equivalence to a dominance relation. (Contributed by NM, 27-Mar-2007.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) | ||
| Theorem | brdom5 10541* | An equivalence to a dominance relation. (Contributed by NM, 29-Mar-2007.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) | ||
| Theorem | brdom4 10542* | An equivalence to a dominance relation. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 ∈ 𝐴 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) | ||
| Theorem | brdom7disj 10543* | An equivalence to a dominance relation for disjoint sets. (Contributed by NM, 29-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝐴 ∩ 𝐵) = ∅ ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓)) | ||
| Theorem | brdom6disj 10544* | An equivalence to a dominance relation for disjoint sets. (Contributed by NM, 5-Apr-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝐴 ∩ 𝐵) = ∅ ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓)) | ||
| Theorem | fin71ac 10545 | Once we allow AC, the "strongest" definition of finite set becomes equivalent to the "weakest" and the entire hierarchy collapses. (Contributed by Stefan O'Rear, 29-Oct-2014.) |
| ⊢ FinVII = Fin | ||
| Theorem | imadomg 10546 | An image of a function under a set is dominated by the set. Proposition 10.34 of [TakeutiZaring] p. 92. (Contributed by NM, 23-Jul-2004.) |
| ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) | ||
| Theorem | fimact 10547 | The image by a function of a countable set is countable. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
| ⊢ ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹 “ 𝐴) ≼ ω) | ||
| Theorem | fnrndomg 10548 | The range of a function is dominated by its domain. (Contributed by NM, 1-Sep-2004.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝐹 Fn 𝐴 → ran 𝐹 ≼ 𝐴)) | ||
| Theorem | fnct 10549 | If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ ω) | ||
| Theorem | mptct 10550* | A countable mapping set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | ||
| Theorem | iunfo 10551* | Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 18-Jan-2014.) |
| ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⇒ ⊢ (2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 | ||
| Theorem | iundom2g 10552* | An upper bound for the cardinality of a disjoint indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) ⇒ ⊢ (𝜑 → 𝑇 ≼ (𝐴 × 𝐶)) | ||
| Theorem | iundomg 10553* | An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) & ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) | ||
| Theorem | iundom 10554* | An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) | ||
| Theorem | unidom 10555* | An upper bound for the cardinality of a union. Theorem 10.47 of [TakeutiZaring] p. 98. (Contributed by NM, 25-Mar-2006.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ 𝐵) → ∪ 𝐴 ≼ (𝐴 × 𝐵)) | ||
| Theorem | uniimadom 10556* | An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | ||
| Theorem | uniimadomf 10557* | An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 10556 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | ||
| Theorem | cardval 10558* | The value of the cardinal number function. Definition 10.4 of [TakeutiZaring] p. 85. See cardval2 10003 for a simpler version of its value. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} | ||
| Theorem | cardid 10559 | Any set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (card‘𝐴) ≈ 𝐴 | ||
| Theorem | cardidg 10560 | Any set is equinumerous to its cardinal number. Closed theorem form of cardid 10559. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝐴 ∈ 𝐵 → (card‘𝐴) ≈ 𝐴) | ||
| Theorem | cardidd 10561 | Any set is equinumerous to its cardinal number. Deduction form of cardid 10559. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (card‘𝐴) ≈ 𝐴) | ||
| Theorem | cardf 10562 | The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ card:V⟶On | ||
| Theorem | carden 10563 |
Two sets are equinumerous iff their cardinal numbers are equal. This
important theorem expresses the essential concept behind
"cardinality" or
"size". This theorem appears as Proposition 10.10 of [TakeutiZaring]
p. 85, Theorem 7P of [Enderton] p. 197,
and Theorem 9 of [Suppes] p. 242
(among others). The Axiom of Choice is required for its proof. Related
theorems are hasheni 14364 and the finite-set-only hashen 14363.
This theorem is also known as Hume's Principle. Gottlob Frege's two-volume Grundgesetze der Arithmetik used his Basic Law V to prove this theorem. Unfortunately Basic Law V caused Frege's system to be inconsistent because it was subject to Russell's paradox (see ru 3763). Later scholars have found that Frege primarily used Basic Law V to Hume's Principle. If Basic Law V is replaced by Hume's Principle in Frege's system, much of Frege's work is restored. Grundgesetze der Arithmetik, once Basic Law V is replaced, proves "Frege's theorem" (the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle). See https://plato.stanford.edu/entries/frege-theorem 3763. We take a different approach, using first-order logic and ZFC, to prove the Peano axioms of arithmetic. The theory of cardinality can also be developed without AC by introducing "card" as a primitive notion and stating this theorem as an axiom, as is done with the axiom for cardinal numbers in [Suppes] p. 111. Finally, if we allow the Axiom of Regularity, we can avoid AC by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank (see karden 9907). (Contributed by NM, 22-Oct-2003.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) | ||
| Theorem | cardeq0 10564 | Only the empty set has cardinality zero. (Contributed by NM, 23-Apr-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) | ||
| Theorem | unsnen 10565 | Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) | ||
| Theorem | carddom 10566 | Two sets have the dominance relationship iff their cardinalities have the subset relationship. Equation i of [Quine] p. 232. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) | ||
| Theorem | cardsdom 10567 | Two sets have the strict dominance relationship iff their cardinalities have the membership relationship. Corollary 19.7(2) of [Eisenberg] p. 310. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ≺ 𝐵)) | ||
| Theorem | domtri 10568 | Trichotomy law for dominance and strict dominance. This theorem is equivalent to the Axiom of Choice. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
| Theorem | entric 10569 | Trichotomy of equinumerosity and strict dominance. This theorem is equivalent to the Axiom of Choice. Theorem 8 of [Suppes] p. 242. (Contributed by NM, 4-Jan-2004.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ∨ 𝐵 ≺ 𝐴)) | ||
| Theorem | entri2 10570 | Trichotomy of dominance and strict dominance. (Contributed by NM, 4-Jan-2004.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≺ 𝐴)) | ||
| Theorem | entri3 10571 | Trichotomy of dominance. This theorem is equivalent to the Axiom of Choice. Part of Proposition 4.42(d) of [Mendelson] p. 275. (Contributed by NM, 4-Jan-2004.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴)) | ||
| Theorem | sdomsdomcard 10572 | A set strictly dominates iff its cardinal strictly dominates. (Contributed by NM, 30-Oct-2003.) |
| ⊢ (𝐴 ≺ 𝐵 ↔ 𝐴 ≺ (card‘𝐵)) | ||
| Theorem | canth3 10573 | Cantor's theorem in terms of cardinals. This theorem tells us that no matter how large a cardinal number is, there is a still larger cardinal number. Theorem 18.12 of [Monk1] p. 133. (Contributed by NM, 5-Nov-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → (card‘𝐴) ∈ (card‘𝒫 𝐴)) | ||
| Theorem | infxpidm 10574 | Every infinite class is equinumerous to its Cartesian square. This theorem, which is equivalent to the axiom of choice over ZF, provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. This is a corollary of infxpen 10026 (used via infxpidm2 10029). (Contributed by NM, 17-Sep-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
| ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | ondomon 10575* | The class of ordinals dominated by a given set is an ordinal. Theorem 56 of [Suppes] p. 227. This theorem can be proved without the axiom of choice, see hartogs 9556. (Contributed by NM, 7-Nov-2003.) (Proof modification is discouraged.) Use hartogs 9556 instead. (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) | ||
| Theorem | cardmin 10576* | The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | ||
| Theorem | ficard 10577 | A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) | ||
| Theorem | infinf 10578 | Equivalence between two infiniteness criteria for sets. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴)) | ||
| Theorem | unirnfdomd 10579 | The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐹:𝑇⟶Fin) & ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) | ||
| Theorem | konigthlem 10580* | Lemma for konigth 10581. (Contributed by Mario Carneiro, 22-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) & ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) & ⊢ 𝐷 = (𝑖 ∈ 𝐴 ↦ (𝑎 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑎)‘𝑖))) & ⊢ 𝐸 = (𝑖 ∈ 𝐴 ↦ (𝑒‘𝑖)) ⇒ ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) | ||
| Theorem | konigth 10581* | Konig's Theorem. If 𝑚(𝑖) ≺ 𝑛(𝑖) for all 𝑖 ∈ 𝐴, then Σ𝑖 ∈ 𝐴𝑚(𝑖) ≺ ∏𝑖 ∈ 𝐴𝑛(𝑖), where the sums and products stand in for disjoint union and infinite cartesian product. The version here is proven with unions rather than disjoint unions for convenience, but the version with disjoint unions is clearly a special case of this version. The Axiom of Choice is needed for this proof, but it contains AC as a simple corollary (letting 𝑚(𝑖) = ∅, this theorem says that an infinite cartesian product of nonempty sets is nonempty), so this is an AC equivalent. Theorem 11.26 of [TakeutiZaring] p. 107. (Contributed by Mario Carneiro, 22-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) & ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) ⇒ ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) | ||
| Theorem | alephsucpw 10582 | The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10688 or gchaleph2 10684.) (Contributed by NM, 27-Aug-2005.) |
| ⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) | ||
| Theorem | aleph1 10583 | The set exponentiation of 2 to the aleph-zero has cardinality of at least aleph-one. (If we were to assume the Continuum Hypothesis, their cardinalities would be the same.) (Contributed by NM, 7-Jul-2004.) |
| ⊢ (ℵ‘1o) ≼ (2o ↑m (ℵ‘∅)) | ||
| Theorem | alephval2 10584* | An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.) |
| ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (ℵ‘𝑦) ≺ 𝑥}) | ||
| Theorem | dominfac 10585 | A nonempty set that is a subset of its union is infinite. This version is proved from ax-ac 10471. See dominf 10457 for a version proved from ax-cc 10447. (Contributed by NM, 25-Mar-2007.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) | ||
| Theorem | iunctb 10586* | The countable union of countable sets is countable (indexed union version of unictb 10587). (Contributed by Mario Carneiro, 18-Jan-2014.) |
| ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) | ||
| Theorem | unictb 10587* | The countable union of countable sets is countable. Theorem 6Q of [Enderton] p. 159. See iunctb 10586 for indexed union version. (Contributed by NM, 26-Mar-2006.) |
| ⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ω) → ∪ 𝐴 ≼ ω) | ||
| Theorem | infmap 10588* | An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. (Contributed by NM, 1-Oct-2004.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ↑m 𝐵) ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) | ||
| Theorem | alephadd 10589 | The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) | ||
| Theorem | alephmul 10590 | The product of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) | ||
| Theorem | alephexp1 10591 | An exponentiation law for alephs. Lemma 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ (2o ↑m (ℵ‘𝐵))) | ||
| Theorem | alephsuc3 10592* | An alternate representation of a successor aleph. Compare alephsuc 10080 and alephsuc2 10092. Equality can be obtained by taking the card of the right-hand side then using alephcard 10082 and carden 10563. (Contributed by NM, 23-Oct-2004.) |
| ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) | ||
| Theorem | alephexp2 10593* | An expression equinumerous to 2 to an aleph power. The proof equates the two laws for cardinal exponentiation alephexp1 10591 (which works if the base is less than or equal to the exponent) and infmap 10588 (which works if the exponent is less than or equal to the base). They can be equated only when the base is equal to the exponent, and this is the result. (Contributed by NM, 23-Oct-2004.) |
| ⊢ (𝐴 ∈ On → (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) | ||
| Theorem | alephreg 10594 | A successor aleph is regular. Theorem 11.15 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.) |
| ⊢ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) | ||
| Theorem | pwcfsdom 10595* | A corollary of Konig's Theorem konigth 10581. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.) |
| ⊢ 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑦))) ⇒ ⊢ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) | ||
| Theorem | cfpwsdom 10596 | A corollary of Konig's Theorem konigth 10581. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (2o ≼ 𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑m (ℵ‘𝐴))))) | ||
| Theorem | alephom 10597 | From canth2 9142, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 10581 (in the form of cfpwsdom 10596), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.) |
| ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) | ||
| Theorem | smobeth 10598 | The beth function is strictly monotone. This function is not strictly the beth function, but rather bethA is the same as (card‘(𝑅1‘(ω +o 𝐴))), since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 2-Jun-2015.) |
| ⊢ Smo (card ∘ 𝑅1) | ||
| Theorem | nd1 10599 | A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) | ||
| Theorem | nd2 10600 | A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧 ∈ 𝑦) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |