Home | Metamath
Proof Explorer Theorem List (p. 106 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29274) |
Hilbert Space Explorer
(29275-30797) |
Users' Mathboxes
(30798-46480) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | wuncidm 10501 | The weak universe closure is idempotent. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝐴 ∈ 𝑉 → (wUniCl‘(wUniCl‘𝐴)) = (wUniCl‘𝐴)) | ||
Theorem | wuncval2 10502* | Our earlier expression for a containing weak universe is in fact the weak universe closure. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 ∪ ∪ 𝑧) ∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) & ⊢ 𝑈 = ∪ ran 𝐹 ⇒ ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) = 𝑈) | ||
Syntax | ctsk 10503 | Extend class definition to include the class of all Tarski classes. |
class Tarski | ||
Definition | df-tsk 10504* | The class of all Tarski classes. Tarski classes is a phrase coined by Grzegorz Bancerek in his article Tarski's Classes and Ranks, Journal of Formalized Mathematics, Vol 1, No 3, May-August 1990. A Tarski class is a set whose existence is ensured by Tarski's axiom A (see ax-groth 10578 and the equivalent axioms). Axiom A was first presented in Tarski's article Ueber unerreichbare Kardinalzahlen. Tarski introduced the axiom A to enable ZFC to manage inaccessible cardinals. Later Grothendieck introduced the concept of Grothendieck universes and showed they were equal to transitive Tarski classes. (Contributed by FL, 30-Dec-2010.) |
⊢ Tarski = {𝑦 ∣ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))} | ||
Theorem | eltskg 10505* | Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) |
⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) | ||
Theorem | eltsk2g 10506* | Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) | ||
Theorem | tskpwss 10507 | First axiom of a Tarski class. The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) | ||
Theorem | tskpw 10508 | Second axiom of a Tarski class. The powerset of an element of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) | ||
Theorem | tsken 10509 | Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) | ||
Theorem | 0tsk 10510 | The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.) |
⊢ ∅ ∈ Tarski | ||
Theorem | tsksdom 10511 | An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝐴 ≺ 𝑇) | ||
Theorem | tskssel 10512 | A part of a Tarski class strictly dominated by the class is an element of the class. JFM CLASSES2 th. 2. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇) | ||
Theorem | tskss 10513 | The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑇) | ||
Theorem | tskin 10514 | The intersection of two elements of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → (𝐴 ∩ 𝐵) ∈ 𝑇) | ||
Theorem | tsksn 10515 | A singleton of an element of a Tarski class belongs to the class. JFM CLASSES2 th. 2 (partly). (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → {𝐴} ∈ 𝑇) | ||
Theorem | tsktrss 10516 | A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ 𝑇) | ||
Theorem | tsksuc 10517 | If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ∈ 𝑇) | ||
Theorem | tsk0 10518 | A nonempty Tarski class contains the empty set. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇) | ||
Theorem | tsk1 10519 | One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o ∈ 𝑇) | ||
Theorem | tsk2 10520 | Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o ∈ 𝑇) | ||
Theorem | 2domtsk 10521 | If a Tarski class is not empty, it has more than two elements. (Contributed by FL, 22-Feb-2011.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o ≺ 𝑇) | ||
Theorem | tskr1om 10522 | A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf 9372.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) | ||
Theorem | tskr1om2 10523 | A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 9372.) (Contributed by NM, 22-Feb-2011.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∪ (𝑅1 “ ω) ⊆ 𝑇) | ||
Theorem | tskinf 10524 | A nonempty Tarski class is infinite. (Contributed by FL, 22-Feb-2011.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇) | ||
Theorem | tskpr 10525 | If 𝐴 and 𝐵 are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ∈ 𝑇) | ||
Theorem | tskop 10526 | If 𝐴 and 𝐵 are members of a Tarski class, their ordered pair is also an element of the class. JFM CLASSES2 th. 4. (Contributed by FL, 22-Feb-2011.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → 〈𝐴, 𝐵〉 ∈ 𝑇) | ||
Theorem | tskxpss 10527 | A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇) | ||
Theorem | tskwe2 10528 | A Tarski class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013.) |
⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) | ||
Theorem | inttsk 10529 | The intersection of a collection of Tarski classes is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Tarski) | ||
Theorem | inar1 10530 | (𝑅1‘𝐴) for 𝐴 a strongly inaccessible cardinal is equipotent to 𝐴. (Contributed by Mario Carneiro, 6-Jun-2013.) |
⊢ (𝐴 ∈ Inacc → (𝑅1‘𝐴) ≈ 𝐴) | ||
Theorem | r1omALT 10531 | Alternate proof of r1om 9999, shorter as a consequence of inar1 10530, but requiring AC. (Contributed by Mario Carneiro, 27-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑅1‘ω) ≈ ω | ||
Theorem | rankcf 10532 | Any set must be at least as large as the cofinality of its rank, because the ranks of the elements of 𝐴 form a cofinal map into (rank‘𝐴). (Contributed by Mario Carneiro, 27-May-2013.) |
⊢ ¬ 𝐴 ≺ (cf‘(rank‘𝐴)) | ||
Theorem | inatsk 10533 | (𝑅1‘𝐴) for 𝐴 a strongly inaccessible cardinal is a Tarski class. (Contributed by Mario Carneiro, 8-Jun-2013.) |
⊢ (𝐴 ∈ Inacc → (𝑅1‘𝐴) ∈ Tarski) | ||
Theorem | r1omtsk 10534 | The set of hereditarily finite sets is a Tarski class. (The Tarski-Grothendieck Axiom is not needed for this theorem.) (Contributed by Mario Carneiro, 28-May-2013.) |
⊢ (𝑅1‘ω) ∈ Tarski | ||
Theorem | tskord 10535 | A Tarski class contains all ordinals smaller than it. (Contributed by Mario Carneiro, 8-Jun-2013.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇) | ||
Theorem | tskcard 10536 | An even more direct relationship than r1tskina 10537 to get an inaccessible cardinal out of a Tarski class: the size of any nonempty Tarski class is an inaccessible cardinal. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ∈ Inacc) | ||
Theorem | r1tskina 10537 | There is a direct relationship between transitive Tarski classes and inaccessible cardinals: the Tarski classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013.) |
⊢ (𝐴 ∈ On → ((𝑅1‘𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc))) | ||
Theorem | tskuni 10538 | The union of an element of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 22-Jun-2013.) |
⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇) → ∪ 𝐴 ∈ 𝑇) | ||
Theorem | tskwun 10539 | A nonempty transitive Tarski class is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ∈ WUni) | ||
Theorem | tskint 10540 | The intersection of an element of a transitive Tarski class is an element of the class. (Contributed by FL, 17-Apr-2011.) (Revised by Mario Carneiro, 20-Sep-2014.) |
⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑇) | ||
Theorem | tskun 10541 | The union of two elements of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 20-Sep-2014.) |
⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (𝐴 ∪ 𝐵) ∈ 𝑇) | ||
Theorem | tskxp 10542 | The Cartesian product of two elements of a transitive Tarski class is an element of the class. JFM CLASSES2 th. 67 (partly). (Contributed by FL, 15-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (𝐴 × 𝐵) ∈ 𝑇) | ||
Theorem | tskmap 10543 | Set exponentiation is an element of a transitive Tarski class. JFM CLASSES2 th. 67 (partly). (Contributed by FL, 15-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (𝐴 ↑m 𝐵) ∈ 𝑇) | ||
Theorem | tskurn 10544 | A transitive Tarski class is closed under small unions. (Contributed by Mario Carneiro, 22-Jun-2013.) |
⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ∪ ran 𝐹 ∈ 𝑇) | ||
Syntax | cgru 10545 | Extend class notation to include the class of all Grothendieck universes. |
class Univ | ||
Definition | df-gru 10546* | A Grothendieck universe is a set that is closed with respect to all the operations that are common in set theory: pairs, powersets, unions, intersections, Cartesian products etc. Grothendieck and alii, Séminaire de Géométrie Algébrique 4, Exposé I, p. 185. It was designed to give a precise meaning to the concepts of categories of sets, groups... (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ Univ = {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢))} | ||
Theorem | elgrug 10547* | Properties of a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | ||
Theorem | grutr 10548 | A Grothendieck universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝑈 ∈ Univ → Tr 𝑈) | ||
Theorem | gruelss 10549 | A Grothendieck universe is transitive, so each element is a subset of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝐴 ⊆ 𝑈) | ||
Theorem | grupw 10550 | A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) | ||
Theorem | gruss 10551 | Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑈) | ||
Theorem | grupr 10552 | A Grothendieck universe contains pairs derived from its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | gruurn 10553 | A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10554 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) | ||
Theorem | gruiun 10554* | If 𝐵(𝑥) is a family of elements of 𝑈 and the index set 𝐴 is an element of 𝑈, then the indexed union ∪ 𝑥 ∈ 𝐴𝐵 is also an element of 𝑈, where 𝑈 is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) | ||
Theorem | gruuni 10555 | A Grothendieck universe contains unions of its elements. (Contributed by Mario Carneiro, 17-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ 𝐴 ∈ 𝑈) | ||
Theorem | grurn 10556 | A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10554 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ran 𝐹 ∈ 𝑈) | ||
Theorem | gruima 10557 | A Grothendieck universe contains image sets drawn from its members. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹 “ 𝐴) ⊆ 𝑈) → (𝐴 ∈ 𝑈 → (𝐹 “ 𝐴) ∈ 𝑈)) | ||
Theorem | gruel 10558 | Any element of an element of a Grothendieck universe is also an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝑈) | ||
Theorem | grusn 10559 | A Grothendieck universe contains the singletons of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → {𝐴} ∈ 𝑈) | ||
Theorem | gruop 10560 | A Grothendieck universe contains ordered pairs of its elements. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 〈𝐴, 𝐵〉 ∈ 𝑈) | ||
Theorem | gruun 10561 | A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) | ||
Theorem | gruxp 10562 | A Grothendieck universe contains binary cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) | ||
Theorem | grumap 10563 | A Grothendieck universe contains all powers of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ↑m 𝐵) ∈ 𝑈) | ||
Theorem | gruixp 10564* | A Grothendieck universe contains indexed cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → X𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) | ||
Theorem | gruiin 10565* | A Grothendieck universe contains indexed intersections of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ ∃𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) | ||
Theorem | gruf 10566 | A Grothendieck universe contains all functions on its elements. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝐹 ∈ 𝑈) | ||
Theorem | gruen 10567 | A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ∧ (𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴)) → 𝐴 ∈ 𝑈) | ||
Theorem | gruwun 10568 | A nonempty Grothendieck universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni) | ||
Theorem | intgru 10569 | The intersection of a family of universes is a universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Univ) | ||
Theorem | ingru 10570* | The intersection of a universe with a class that acts like a universe is another universe. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran 𝑦 ∈ 𝐴))) → (𝑈 ∈ Univ → (𝑈 ∩ 𝐴) ∈ Univ)) | ||
Theorem | wfgru 10571 | The wellfounded part of a universe is another universe. (Contributed by Mario Carneiro, 17-Jun-2013.) |
⊢ (𝑈 ∈ Univ → (𝑈 ∩ ∪ (𝑅1 “ On)) ∈ Univ) | ||
Theorem | grudomon 10572 | Each ordinal that is comparable with an element of the universe is in the universe. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝐵 ∈ 𝑈 ∧ 𝐴 ≼ 𝐵)) → 𝐴 ∈ 𝑈) | ||
Theorem | gruina 10573 | If a Grothendieck universe 𝑈 is nonempty, then the height of the ordinals in 𝑈 is a strongly inaccessible cardinal. (Contributed by Mario Carneiro, 17-Jun-2013.) |
⊢ 𝐴 = (𝑈 ∩ On) ⇒ ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc) | ||
Theorem | grur1a 10574 | A characterization of Grothendieck universes, part 1. (Contributed by Mario Carneiro, 23-Jun-2013.) |
⊢ 𝐴 = (𝑈 ∩ On) ⇒ ⊢ (𝑈 ∈ Univ → (𝑅1‘𝐴) ⊆ 𝑈) | ||
Theorem | grur1 10575 | A characterization of Grothendieck universes, part 2. (Contributed by Mario Carneiro, 24-Jun-2013.) |
⊢ 𝐴 = (𝑈 ∩ On) ⇒ ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → 𝑈 = (𝑅1‘𝐴)) | ||
Theorem | grutsk1 10576 | Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni 10538.) (Contributed by Mario Carneiro, 17-Jun-2013.) |
⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ) | ||
Theorem | grutsk 10577 | Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} | ||
Axiom | ax-groth 10578* | The Tarski-Grothendieck Axiom. For every set 𝑥 there is an inaccessible cardinal 𝑦 such that 𝑦 is not in 𝑥. The addition of this axiom to ZFC set theory provides a framework for category theory, thus for all practical purposes giving us a complete foundation for "all of mathematics". This version of the axiom is used by the Mizar project (http://www.mizar.org/JFM/Axiomatics/tarski.html). Unlike the ZFC axioms, this axiom is very long when expressed in terms of primitive symbols (see grothprim 10589). An open problem is finding a shorter equivalent. (Contributed by NM, 18-Mar-2007.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) | ||
Theorem | axgroth5 10579* | The Tarski-Grothendieck axiom using abbreviations. (Contributed by NM, 22-Jun-2009.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) | ||
Theorem | axgroth2 10580* | Alternate version of the Tarski-Grothendieck Axiom. (Contributed by NM, 18-Mar-2007.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) | ||
Theorem | grothpw 10581* | Derive the Axiom of Power Sets ax-pow 5292 from the Tarski-Grothendieck axiom ax-groth 10578. That it follows is mentioned by Bob Solovay at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 10578. Note that ax-pow 5292 is not used by the proof. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.) |
⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
Theorem | grothpwex 10582 | Derive the Axiom of Power Sets from the Tarski-Grothendieck axiom ax-groth 10578. Note that ax-pow 5292 is not used by the proof. Use axpweq 5291 to obtain ax-pow 5292. Use pwex 5307 or pwexg 5305 instead. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.) |
⊢ 𝒫 𝑥 ∈ V | ||
Theorem | axgroth6 10583* | The Tarski-Grothendieck axiom using abbreviations. This version is called Tarski's axiom: given a set 𝑥, there exists a set 𝑦 containing 𝑥, the subsets of the members of 𝑦, the power sets of the members of 𝑦, and the subsets of 𝑦 of cardinality less than that of 𝑦. (Contributed by NM, 21-Jun-2009.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦)) | ||
Theorem | grothomex 10584 | The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex 9377). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.) |
⊢ ω ∈ V | ||
Theorem | grothac 10585 | The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 10224). This can be put in a more conventional form via ween 9790 and dfac8 9890. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 9890). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.) |
⊢ dom card = V | ||
Theorem | axgroth3 10586* | Alternate version of the Tarski-Grothendieck Axiom. ax-cc 10190 is used to derive this version. (Contributed by NM, 26-Mar-2007.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) | ||
Theorem | axgroth4 10587* | Alternate version of the Tarski-Grothendieck Axiom. ax-ac 10214 is used to derive this version. (Contributed by NM, 16-Apr-2007.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∃𝑣 ∈ 𝑦 ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) | ||
Theorem | grothprimlem 10588* | Lemma for grothprim 10589. Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007.) |
⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) | ||
Theorem | grothprim 10589* | The Tarski-Grothendieck Axiom ax-groth 10578 expanded into set theory primitives using 163 symbols (allowing the defined symbols ∧, ∨, ↔, and ∃). An open problem is whether a shorter equivalent exists (when expanded to primitives). (Contributed by NM, 16-Apr-2007.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧((𝑧 ∈ 𝑦 → ∃𝑣(𝑣 ∈ 𝑦 ∧ ∀𝑤(∀𝑢(𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧) → (𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣)))) ∧ ∃𝑤((𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦) → (∀𝑣((𝑣 ∈ 𝑧 → ∃𝑡∀𝑢(∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑣 ∨ ℎ = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣 ∈ 𝑦 → (𝑣 ∈ 𝑧 ∨ ∃𝑢(𝑢 ∈ 𝑧 ∧ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣))))))) ∨ 𝑧 ∈ 𝑦)))) | ||
Theorem | grothtsk 10590 | The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.) |
⊢ ∪ Tarski = V | ||
Theorem | inaprc 10591 | An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ Inacc ∉ V | ||
Syntax | ctskm 10592 | Extend class definition to include the map whose value is the smallest Tarski class. |
class tarskiMap | ||
Definition | df-tskm 10593* | A function that maps a set 𝑥 to the smallest Tarski class that contains the set. (Contributed by FL, 30-Dec-2010.) |
⊢ tarskiMap = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) | ||
Theorem | tskmval 10594* | Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | ||
Theorem | tskmid 10595 | The set 𝐴 is an element of the smallest Tarski class that contains 𝐴. CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) | ||
Theorem | tskmcl 10596 | A Tarski class that contains 𝐴 is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
⊢ (tarskiMap‘𝐴) ∈ Tarski | ||
Theorem | sstskm 10597* | Being a part of (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) | ||
Theorem | eltskm 10598* | Belonging to (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) | ||
This section derives the basics of real and complex numbers. We first construct and axiomatize real and complex numbers (e.g., ax-resscn 10927). After that, we derive their basic properties, various operations like addition (df-add 10881) and sine (df-sin 15775), and subsets such as the integers (df-z 12318) and natural numbers (df-nn 11972). | ||
Syntax | cnpi 10599 |
The set of positive integers, which is the set of natural numbers ω
with 0 removed.
Note: This is the start of the Dedekind-cut construction of real and complex numbers. The last lemma of the construction is mulcnsrec 10899. The actual set of Dedekind cuts is defined by df-np 10736. |
class N | ||
Syntax | cpli 10600 | Positive integer addition. |
class +N |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |