![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version |
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | exbii 1845 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 |
This theorem is referenced by: 19.42v 1951 19.42 2234 eupickb 2633 datisi 2678 disamis 2679 dimatis 2686 fresison 2687 bamalip 2690 risset 3231 morex 3728 pwpw0 4818 dfuni2 4914 eluni2 4916 dfiun2gOLD 5036 cnvco 5899 imadif 6652 uniuni 7781 pceu 16880 gsumval3eu 19937 isch3 31270 tgoldbachgt 34657 bnj1109 34779 bnj1304 34812 bnj849 34918 funpartlem 35924 bj-19.41t 36757 bj-elsngl 36951 bj-ccinftydisj 37196 mopickr 38345 moantr 38346 brcosscnvcoss 38416 rr-groth 44295 rr-grothshortbi 44299 eluni2f 45043 ssfiunibd 45260 setrec1lem3 48920 |
Copyright terms: Public domain | W3C validator |