| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version | ||
| Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | 1 | exbii 1849 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: 19.42v 1954 19.42 2239 eupickb 2630 datisi 2675 disamis 2676 dimatis 2683 fresison 2684 bamalip 2687 risset 3207 morex 3673 pwpw0 4762 dfuni2 4858 eluni2 4860 cnvco 5824 imadif 6565 uniuni 7695 pceu 16758 gsumval3eu 19816 isch3 31221 tgoldbachgt 34676 bnj1109 34798 bnj1304 34831 bnj849 34937 onvf1odlem1 35147 funpartlem 35986 bj-19.41t 36818 bj-elsngl 37012 bj-ccinftydisj 37257 mopickr 38405 moantr 38406 brcosscnvcoss 38546 rr-groth 44402 rr-grothshortbi 44406 eluni2f 45210 ssfiunibd 45420 chnsubseqword 46986 setrec1lem3 49800 |
| Copyright terms: Public domain | W3C validator |