| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version | ||
| Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | 1 | exbii 1848 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.42v 1953 19.42 2237 eupickb 2628 datisi 2673 disamis 2674 dimatis 2681 fresison 2682 bamalip 2685 risset 3204 morex 3679 pwpw0 4764 dfuni2 4860 eluni2 4862 cnvco 5828 imadif 6566 uniuni 7698 pceu 16758 gsumval3eu 19783 isch3 31185 tgoldbachgt 34631 bnj1109 34753 bnj1304 34786 bnj849 34892 onvf1odlem1 35080 funpartlem 35920 bj-19.41t 36752 bj-elsngl 36946 bj-ccinftydisj 37191 mopickr 38335 moantr 38336 brcosscnvcoss 38415 rr-groth 44276 rr-grothshortbi 44280 eluni2f 45085 ssfiunibd 45295 setrec1lem3 49678 |
| Copyright terms: Public domain | W3C validator |