| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version | ||
| Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | 1 | exbii 1848 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.42v 1953 19.42 2237 eupickb 2635 datisi 2680 disamis 2681 dimatis 2688 fresison 2689 bamalip 2692 risset 3221 morex 3707 pwpw0 4794 dfuni2 4890 eluni2 4892 dfiun2gOLD 5012 cnvco 5870 imadif 6625 uniuni 7761 pceu 16871 gsumval3eu 19890 isch3 31227 tgoldbachgt 34700 bnj1109 34822 bnj1304 34855 bnj849 34961 funpartlem 35965 bj-19.41t 36797 bj-elsngl 36991 bj-ccinftydisj 37236 mopickr 38386 moantr 38387 brcosscnvcoss 38457 rr-groth 44290 rr-grothshortbi 44294 eluni2f 45094 ssfiunibd 45305 setrec1lem3 49520 |
| Copyright terms: Public domain | W3C validator |