![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version |
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 461 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | exbii 1827 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∃wex 1759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1760 |
This theorem is referenced by: 19.42v 1929 19.42 2201 eupickb 2688 datisi 2737 disamis 2738 dimatis 2745 fresison 2746 bamalip 2749 risset 3228 morex 3641 pwpw0 4647 pwsnALT 4732 dfuni2 4741 eluni2 4743 unipr 4752 dfiun2g 4852 dfiun2gOLD 4853 cnvco 5634 imadif 6300 uniuni 7332 pceu 16000 gsumval3eu 18733 isch3 28697 tgoldbachgt 31507 bnj1109 31631 bnj1304 31664 bnj849 31769 funpartlem 32957 bj-elsngl 33831 bj-ccinftydisj 33999 moantr 35098 brcosscnvcoss 35160 rr-groth 40084 eluni2f 40862 ssfiunibd 41070 setrec1lem3 44226 |
Copyright terms: Public domain | W3C validator |