Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version |
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 461 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | exbii 1850 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: 19.42v 1957 19.42 2229 eupickb 2637 datisi 2681 disamis 2682 dimatis 2689 fresison 2690 bamalip 2693 risset 3194 morex 3654 pwpw0 4746 pwsnOLD 4832 dfuni2 4841 eluni2 4843 uniprOLD 4858 dfiun2gOLD 4961 cnvco 5794 imadif 6518 uniuni 7612 pceu 16547 gsumval3eu 19505 isch3 29603 tgoldbachgt 32643 bnj1109 32766 bnj1304 32799 bnj849 32905 funpartlem 34244 bj-19.41t 34956 bj-elsngl 35158 bj-ccinftydisj 35384 moantr 36494 brcosscnvcoss 36557 rr-groth 41917 rr-grothshortbi 41921 eluni2f 42653 ssfiunibd 42848 setrec1lem3 46395 |
Copyright terms: Public domain | W3C validator |