![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version |
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | exbii 1846 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: 19.42v 1953 19.42 2237 eupickb 2638 datisi 2683 disamis 2684 dimatis 2691 fresison 2692 bamalip 2695 risset 3239 morex 3741 pwpw0 4838 dfuni2 4933 eluni2 4935 dfiun2gOLD 5054 cnvco 5910 imadif 6662 uniuni 7797 pceu 16893 gsumval3eu 19946 isch3 31273 tgoldbachgt 34640 bnj1109 34762 bnj1304 34795 bnj849 34901 funpartlem 35906 bj-19.41t 36740 bj-elsngl 36934 bj-ccinftydisj 37179 mopickr 38319 moantr 38320 brcosscnvcoss 38390 rr-groth 44268 rr-grothshortbi 44272 eluni2f 45005 ssfiunibd 45224 setrec1lem3 48781 |
Copyright terms: Public domain | W3C validator |