| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version | ||
| Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | 1 | exbii 1848 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.42v 1953 19.42 2237 eupickb 2628 datisi 2673 disamis 2674 dimatis 2681 fresison 2682 bamalip 2685 risset 3212 morex 3690 pwpw0 4777 dfuni2 4873 eluni2 4875 dfiun2gOLD 4995 cnvco 5849 imadif 6600 uniuni 7738 pceu 16817 gsumval3eu 19834 isch3 31170 tgoldbachgt 34654 bnj1109 34776 bnj1304 34809 bnj849 34915 onvf1odlem1 35090 funpartlem 35930 bj-19.41t 36762 bj-elsngl 36956 bj-ccinftydisj 37201 mopickr 38345 moantr 38346 brcosscnvcoss 38425 rr-groth 44288 rr-grothshortbi 44292 eluni2f 45097 ssfiunibd 45307 setrec1lem3 49678 |
| Copyright terms: Public domain | W3C validator |