Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version |
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | exbii 1851 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: 19.42v 1958 19.42 2232 eupickb 2637 datisi 2681 disamis 2682 dimatis 2689 fresison 2690 bamalip 2693 risset 3193 morex 3649 pwpw0 4743 pwsnOLD 4829 dfuni2 4838 eluni2 4840 uniprOLD 4855 dfiun2g 4957 cnvco 5783 imadif 6502 uniuni 7590 pceu 16475 gsumval3eu 19420 isch3 29504 tgoldbachgt 32543 bnj1109 32666 bnj1304 32699 bnj849 32805 funpartlem 34171 bj-19.41t 34883 bj-elsngl 35085 bj-ccinftydisj 35311 moantr 36421 brcosscnvcoss 36484 rr-groth 41806 rr-grothshortbi 41810 eluni2f 42542 ssfiunibd 42738 setrec1lem3 46281 |
Copyright terms: Public domain | W3C validator |