| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version | ||
| Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | 1 | exbii 1848 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.42v 1953 19.42 2237 eupickb 2629 datisi 2674 disamis 2675 dimatis 2682 fresison 2683 bamalip 2686 risset 3213 morex 3693 pwpw0 4780 dfuni2 4876 eluni2 4878 dfiun2gOLD 4998 cnvco 5852 imadif 6603 uniuni 7741 pceu 16824 gsumval3eu 19841 isch3 31177 tgoldbachgt 34661 bnj1109 34783 bnj1304 34816 bnj849 34922 onvf1odlem1 35097 funpartlem 35937 bj-19.41t 36769 bj-elsngl 36963 bj-ccinftydisj 37208 mopickr 38352 moantr 38353 brcosscnvcoss 38432 rr-groth 44295 rr-grothshortbi 44299 eluni2f 45104 ssfiunibd 45314 setrec1lem3 49682 |
| Copyright terms: Public domain | W3C validator |