MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exancom Structured version   Visualization version   GIF version

Theorem exancom 1840
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))

Proof of Theorem exancom
StepHypRef Expression
1 ancom 461 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
21exbii 1827 1 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  wex 1759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1760
This theorem is referenced by:  19.42v  1929  19.42  2201  eupickb  2688  datisi  2737  disamis  2738  dimatis  2745  fresison  2746  bamalip  2749  risset  3228  morex  3641  pwpw0  4647  pwsnALT  4732  dfuni2  4741  eluni2  4743  unipr  4752  dfiun2g  4852  dfiun2gOLD  4853  cnvco  5634  imadif  6300  uniuni  7332  pceu  16000  gsumval3eu  18733  isch3  28697  tgoldbachgt  31507  bnj1109  31631  bnj1304  31664  bnj849  31769  funpartlem  32957  bj-elsngl  33831  bj-ccinftydisj  33999  moantr  35098  brcosscnvcoss  35160  rr-groth  40084  eluni2f  40862  ssfiunibd  41070  setrec1lem3  44226
  Copyright terms: Public domain W3C validator