MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exancom Structured version   Visualization version   GIF version

Theorem exancom 1865
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))

Proof of Theorem exancom
StepHypRef Expression
1 ancom 462 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
21exbii 1851 1 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783
This theorem is referenced by:  19.42v  1958  19.42  2230  eupickb  2632  datisi  2676  disamis  2677  dimatis  2684  fresison  2685  bamalip  2688  risset  3231  morex  3716  pwpw0  4817  pwsnOLD  4902  dfuni2  4911  eluni2  4913  uniprOLD  4928  dfiun2gOLD  5035  cnvco  5886  imadif  6633  uniuni  7749  pceu  16779  gsumval3eu  19772  isch3  30494  tgoldbachgt  33675  bnj1109  33797  bnj1304  33830  bnj849  33936  funpartlem  34914  bj-19.41t  35652  bj-elsngl  35849  bj-ccinftydisj  36094  mopickr  37232  moantr  37233  brcosscnvcoss  37304  rr-groth  43058  rr-grothshortbi  43062  eluni2f  43792  ssfiunibd  44019  setrec1lem3  47734
  Copyright terms: Public domain W3C validator