| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version | ||
| Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | 1 | exbii 1848 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.42v 1953 19.42 2237 eupickb 2628 datisi 2673 disamis 2674 dimatis 2681 fresison 2682 bamalip 2685 risset 3210 morex 3687 pwpw0 4773 dfuni2 4869 eluni2 4871 cnvco 5839 imadif 6584 uniuni 7718 pceu 16793 gsumval3eu 19818 isch3 31220 tgoldbachgt 34647 bnj1109 34769 bnj1304 34802 bnj849 34908 onvf1odlem1 35083 funpartlem 35923 bj-19.41t 36755 bj-elsngl 36949 bj-ccinftydisj 37194 mopickr 38338 moantr 38339 brcosscnvcoss 38418 rr-groth 44281 rr-grothshortbi 44285 eluni2f 45090 ssfiunibd 45300 setrec1lem3 49671 |
| Copyright terms: Public domain | W3C validator |