MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  barbari Structured version   Visualization version   GIF version

Theorem barbari 2657
Description: "Barbari", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is 𝜓. In Aristotelian notation, AAI-1: MaP and SaM therefore SiP. For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
Hypotheses
Ref Expression
barbari.maj 𝑥(𝜑𝜓)
barbari.min 𝑥(𝜒𝜑)
barbari.e 𝑥𝜒
Assertion
Ref Expression
barbari 𝑥(𝜒𝜓)

Proof of Theorem barbari
StepHypRef Expression
1 barbari.e . 2 𝑥𝜒
2 barbari.maj . . 3 𝑥(𝜑𝜓)
3 barbari.min . . 3 𝑥(𝜒𝜑)
42, 3barbara 2651 . 2 𝑥(𝜒𝜓)
51, 4barbarilem 2656 1 𝑥(𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1531  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774
This theorem is referenced by:  celaront  2659  bamalip  2680
  Copyright terms: Public domain W3C validator