![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > barbari | Structured version Visualization version GIF version |
Description: "Barbari", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is 𝜓. In Aristotelian notation, AAI-1: MaP and SaM therefore SiP. For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
barbari.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
barbari.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
barbari.e | ⊢ ∃𝑥𝜒 |
Ref | Expression |
---|---|
barbari | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | barbari.e | . 2 ⊢ ∃𝑥𝜒 | |
2 | barbari.maj | . . 3 ⊢ ∀𝑥(𝜑 → 𝜓) | |
3 | barbari.min | . . 3 ⊢ ∀𝑥(𝜒 → 𝜑) | |
4 | 2, 3 | barbara 2666 | . 2 ⊢ ∀𝑥(𝜒 → 𝜓) |
5 | 1, 4 | barbarilem 2671 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: celaront 2674 bamalip 2695 |
Copyright terms: Public domain | W3C validator |