![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > barbari | Structured version Visualization version GIF version |
Description: "Barbari", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is 𝜓. In Aristotelian notation, AAI-1: MaP and SaM therefore SiP. For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
barbari.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
barbari.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
barbari.e | ⊢ ∃𝑥𝜒 |
Ref | Expression |
---|---|
barbari | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | barbari.e | . 2 ⊢ ∃𝑥𝜒 | |
2 | barbari.maj | . . 3 ⊢ ∀𝑥(𝜑 → 𝜓) | |
3 | barbari.min | . . 3 ⊢ ∀𝑥(𝜒 → 𝜑) | |
4 | 2, 3 | barbara 2746 | . 2 ⊢ ∀𝑥(𝜒 → 𝜓) |
5 | 1, 4 | barbarilem 2751 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∀wal 1654 ∃wex 1878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1879 |
This theorem is referenced by: celaront 2754 bamalip 2786 |
Copyright terms: Public domain | W3C validator |