Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  barbari Structured version   Visualization version   GIF version

Theorem barbari 2752
 Description: "Barbari", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is 𝜓. In Aristotelian notation, AAI-1: MaP and SaM therefore SiP. For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
Hypotheses
Ref Expression
barbari.maj 𝑥(𝜑𝜓)
barbari.min 𝑥(𝜒𝜑)
barbari.e 𝑥𝜒
Assertion
Ref Expression
barbari 𝑥(𝜒𝜓)

Proof of Theorem barbari
StepHypRef Expression
1 barbari.e . 2 𝑥𝜒
2 barbari.maj . . 3 𝑥(𝜑𝜓)
3 barbari.min . . 3 𝑥(𝜒𝜑)
42, 3barbara 2746 . 2 𝑥(𝜒𝜓)
51, 4barbarilem 2751 1 𝑥(𝜒𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386  ∀wal 1654  ∃wex 1878 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908 This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1879 This theorem is referenced by:  celaront  2754  bamalip  2786
 Copyright terms: Public domain W3C validator