Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  triantru3 Structured version   Visualization version   GIF version

Theorem triantru3 36433
Description: A wff is equivalent to its conjunctions with truths. (Contributed by Peter Mazsa, 30-Nov-2018.)
Hypotheses
Ref Expression
triantru3.1 𝜑
triantru3.2 𝜓
Assertion
Ref Expression
triantru3 (𝜒 ↔ (𝜑𝜓𝜒))

Proof of Theorem triantru3
StepHypRef Expression
1 triantru3.1 . . 3 𝜑
21biantrur 532 . 2 ((𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
3 triantru3.2 . . 3 𝜓
43biantrur 532 . 2 (𝜒 ↔ (𝜓𝜒))
5 3anass 1095 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
62, 4, 53bitr4i 303 1 (𝜒 ↔ (𝜑𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089
This theorem is referenced by:  eqvrelcoss  36831  eqvrelcoss3  36832
  Copyright terms: Public domain W3C validator