Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > triantru3 | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunctions with truths. (Contributed by Peter Mazsa, 30-Nov-2018.) |
Ref | Expression |
---|---|
triantru3.1 | ⊢ 𝜑 |
triantru3.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
triantru3 | ⊢ (𝜒 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | triantru3.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | biantrur 532 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | triantru3.2 | . . 3 ⊢ 𝜓 | |
4 | 3 | biantrur 532 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
5 | 3anass 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
6 | 2, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝜒 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: eqvrelcoss 36831 eqvrelcoss3 36832 |
Copyright terms: Public domain | W3C validator |