| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| 3 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianim 576 anbi1i 624 pm5.36 833 oranabs 1001 pm5.61 1002 pm5.75 1030 eu6lem 2566 2eu5 2649 ceqsralt 3473 ceqsrexbv 3613 reuind 3715 rabsn 4675 preqsn 4816 dfiun2g 4983 reusv2lem4 5343 reusv2lem5 5344 dfid2 5520 elidinxp 5999 dfoprab2 7411 fsplit 8057 xpsnen 8985 elfpw 9263 rankuni 9778 prprrab 14398 isprm2 16611 ismnd 18629 dfgrp2e 18860 pjfval2 21634 neipeltop 23032 cmpfi 23311 isxms2 24352 ishl2 25286 wwlksn0s 29824 clwwlkn1 30003 clwwlkn2 30006 pjimai 32138 bj-snglc 36942 bj-dfid2ALT 37038 bj-epelb 37042 bj-elid6 37143 isbndx 37761 inecmo2 38323 inecmo3 38328 dfrefrel2 38491 dfcnvrefrel2 38506 dfsymrel2 38525 dfsymrel4 38527 dfsymrel5 38528 refsymrels2 38541 refsymrel2 38543 refsymrel3 38544 dftrrel2 38553 elfunsALTV2 38670 elfunsALTV3 38671 elfunsALTV4 38672 elfunsALTV5 38673 eldisjs2 38700 cdlemefrs29pre00 40374 cdlemefrs29cpre1 40377 dihglb2 41321 redvmptabs 42333 elnonrel 43558 pm13.193 44384 dfnbgr6 47842 |
| Copyright terms: Public domain | W3C validator |