Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32i 575 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
3 | ancom 461 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
4 | ancom 461 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anbi1i 624 pm5.36 831 oranabs 997 pm5.61 998 pm5.75 1026 eu6lem 2573 2eu5 2657 ceqsralt 3463 ceqsrexbv 3586 reuind 3688 rabsn 4657 preqsn 4792 dfiun2g 4960 reusv2lem4 5324 reusv2lem5 5325 dfid2 5491 elidinxp 5951 dfoprab2 7333 fsplit 7957 fsplitOLD 7958 xpsnen 8842 elfpw 9121 rankuni 9621 prprrab 14187 isprm2 16387 ismnd 18388 dfgrp2e 18605 pjfval2 20916 neipeltop 22280 cmpfi 22559 isxms2 23601 ishl2 24534 wwlksn0s 28226 clwwlkn1 28405 clwwlkn2 28408 pjimai 30538 bj-snglc 35159 bj-dfid2ALT 35236 bj-epelb 35240 bj-elid6 35341 isbndx 35940 inecmo2 36488 inecmo3 36493 dfrefrel2 36633 dfcnvrefrel2 36646 dfsymrel2 36663 dfsymrel4 36665 dfsymrel5 36666 refsymrels2 36679 refsymrel2 36681 refsymrel3 36682 dftrrel2 36691 elfunsALTV2 36804 elfunsALTV3 36805 elfunsALTV4 36806 elfunsALTV5 36807 eldisjs2 36834 cdlemefrs29pre00 38409 cdlemefrs29cpre1 38412 dihglb2 39356 elnonrel 41193 pm13.193 42029 |
Copyright terms: Public domain | W3C validator |