| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| 3 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianim 576 anbi1i 624 pm5.36 833 oranabs 1001 pm5.61 1002 pm5.75 1030 eu6lem 2568 2eu5 2651 ceqsralt 3471 ceqsrexbv 3611 reuind 3712 rabsn 4674 preqsn 4814 dfiun2g 4980 reusv2lem4 5339 reusv2lem5 5340 dfid2 5513 elidinxp 5993 dfoprab2 7404 fsplit 8047 xpsnen 8974 elfpw 9238 rankuni 9756 prprrab 14380 isprm2 16593 ismnd 18645 dfgrp2e 18876 pjfval2 21647 neipeltop 23045 cmpfi 23324 isxms2 24364 ishl2 25298 wwlksn0s 29840 clwwlkn1 30019 clwwlkn2 30022 pjimai 32154 bj-snglc 37009 bj-dfid2ALT 37105 bj-epelb 37109 bj-elid6 37210 isbndx 37828 inecmo2 38390 inecmo3 38395 dfrefrel2 38558 dfcnvrefrel2 38573 dfsymrel2 38592 dfsymrel4 38594 dfsymrel5 38595 refsymrels2 38608 refsymrel2 38610 refsymrel3 38611 dftrrel2 38620 elfunsALTV2 38737 elfunsALTV3 38738 elfunsALTV4 38739 elfunsALTV5 38740 eldisjs2 38767 cdlemefrs29pre00 40440 cdlemefrs29cpre1 40443 dihglb2 41387 redvmptabs 42399 elnonrel 43624 pm13.193 44450 dfnbgr6 47894 |
| Copyright terms: Public domain | W3C validator |