![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
3 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
4 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anbi1i 623 pm5.36 833 oranabs 1000 pm5.61 1001 pm5.75 1029 eu6lem 2576 2eu5 2659 ceqsralt 3524 ceqsrexbv 3669 reuind 3775 rabsn 4746 preqsn 4886 dfiun2g 5053 reusv2lem4 5419 reusv2lem5 5420 dfid2 5595 elidinxp 6073 dfoprab2 7508 fsplit 8158 xpsnen 9121 elfpw 9424 rankuni 9932 prprrab 14522 isprm2 16729 ismnd 18775 dfgrp2e 19003 pjfval2 21752 neipeltop 23158 cmpfi 23437 isxms2 24479 ishl2 25423 wwlksn0s 29894 clwwlkn1 30073 clwwlkn2 30076 pjimai 32208 bj-snglc 36935 bj-dfid2ALT 37031 bj-epelb 37035 bj-elid6 37136 isbndx 37742 bianim 38185 inecmo2 38312 inecmo3 38317 dfrefrel2 38471 dfcnvrefrel2 38486 dfsymrel2 38505 dfsymrel4 38507 dfsymrel5 38508 refsymrels2 38521 refsymrel2 38523 refsymrel3 38524 dftrrel2 38533 elfunsALTV2 38649 elfunsALTV3 38650 elfunsALTV4 38651 elfunsALTV5 38652 eldisjs2 38679 cdlemefrs29pre00 40352 cdlemefrs29cpre1 40355 dihglb2 41299 elnonrel 43547 pm13.193 44380 dfnbgr6 47729 |
Copyright terms: Public domain | W3C validator |