| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| 3 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianim 576 anbi1i 624 pm5.36 833 oranabs 1001 pm5.61 1002 pm5.75 1030 eu6lem 2567 2eu5 2650 ceqsralt 3485 ceqsrexbv 3625 reuind 3727 rabsn 4688 preqsn 4829 dfiun2g 4997 reusv2lem4 5359 reusv2lem5 5360 dfid2 5538 elidinxp 6018 dfoprab2 7450 fsplit 8099 xpsnen 9029 elfpw 9312 rankuni 9823 prprrab 14445 isprm2 16659 ismnd 18671 dfgrp2e 18902 pjfval2 21625 neipeltop 23023 cmpfi 23302 isxms2 24343 ishl2 25277 wwlksn0s 29798 clwwlkn1 29977 clwwlkn2 29980 pjimai 32112 bj-snglc 36964 bj-dfid2ALT 37060 bj-epelb 37064 bj-elid6 37165 isbndx 37783 inecmo2 38345 inecmo3 38350 dfrefrel2 38513 dfcnvrefrel2 38528 dfsymrel2 38547 dfsymrel4 38549 dfsymrel5 38550 refsymrels2 38563 refsymrel2 38565 refsymrel3 38566 dftrrel2 38575 elfunsALTV2 38692 elfunsALTV3 38693 elfunsALTV4 38694 elfunsALTV5 38695 eldisjs2 38722 cdlemefrs29pre00 40396 cdlemefrs29cpre1 40399 dihglb2 41343 redvmptabs 42355 elnonrel 43581 pm13.193 44407 dfnbgr6 47861 |
| Copyright terms: Public domain | W3C validator |