| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| 3 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianim 576 anbi1i 624 pm5.36 833 oranabs 1001 pm5.61 1002 pm5.75 1030 eu6lem 2570 2eu5 2653 ceqsralt 3472 ceqsrexbv 3607 reuind 3708 rabsn 4675 preqsn 4815 dfiun2g 4982 reusv2lem4 5343 reusv2lem5 5344 dfid2 5518 elidinxp 5999 dfoprab2 7412 fsplit 8055 xpsnen 8983 elfpw 9247 rankuni 9765 prprrab 14384 isprm2 16597 ismnd 18649 dfgrp2e 18880 pjfval2 21650 neipeltop 23047 cmpfi 23326 isxms2 24366 ishl2 25300 wwlksn0s 29843 clwwlkn1 30025 clwwlkn2 30028 pjimai 32160 bj-snglc 37036 bj-dfid2ALT 37132 bj-epelb 37136 bj-elid6 37237 isbndx 37845 inecmo2 38411 inecmo3 38416 dfrefrel2 38630 dfcnvrefrel2 38645 dfsymrel2 38668 dfsymrel4 38670 dfsymrel5 38671 refsymrels2 38684 refsymrel2 38686 refsymrel3 38687 dftrrel2 38696 elfunsALTV2 38814 elfunsALTV3 38815 elfunsALTV4 38816 elfunsALTV5 38817 eldisjs2 38844 cdlemefrs29pre00 40517 cdlemefrs29cpre1 40520 dihglb2 41464 redvmptabs 42481 elnonrel 43705 pm13.193 44531 dfnbgr6 47984 |
| Copyright terms: Public domain | W3C validator |