![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32i 573 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
3 | ancom 459 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
4 | ancom 459 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: anbi1i 622 pm5.36 830 oranabs 996 pm5.61 997 pm5.75 1025 eu6lem 2565 2eu5 2649 ceqsralt 3505 ceqsrexbv 3643 reuind 3748 rabsn 4724 preqsn 4861 dfiun2g 5032 reusv2lem4 5398 reusv2lem5 5399 dfid2 5575 elidinxp 6042 dfoprab2 7469 fsplit 8105 xpsnen 9057 elfpw 9356 rankuni 9860 prprrab 14438 isprm2 16623 ismnd 18662 dfgrp2e 18884 pjfval2 21483 neipeltop 22853 cmpfi 23132 isxms2 24174 ishl2 25118 wwlksn0s 29382 clwwlkn1 29561 clwwlkn2 29564 pjimai 31696 bj-snglc 36153 bj-dfid2ALT 36249 bj-epelb 36253 bj-elid6 36354 isbndx 36953 bianim 37399 inecmo2 37528 inecmo3 37533 dfrefrel2 37688 dfcnvrefrel2 37703 dfsymrel2 37722 dfsymrel4 37724 dfsymrel5 37725 refsymrels2 37738 refsymrel2 37740 refsymrel3 37741 dftrrel2 37750 elfunsALTV2 37866 elfunsALTV3 37867 elfunsALTV4 37868 elfunsALTV5 37869 eldisjs2 37896 cdlemefrs29pre00 39569 cdlemefrs29cpre1 39572 dihglb2 40516 elnonrel 42638 pm13.193 43472 |
Copyright terms: Public domain | W3C validator |