| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| 3 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianim 576 anbi1i 624 pm5.36 834 oranabs 1002 pm5.61 1003 pm5.75 1031 eu6lem 2573 2eu5 2656 ceqsralt 3516 ceqsrexbv 3656 reuind 3759 rabsn 4721 preqsn 4862 dfiun2g 5030 reusv2lem4 5401 reusv2lem5 5402 dfid2 5580 elidinxp 6062 dfoprab2 7491 fsplit 8142 xpsnen 9095 elfpw 9394 rankuni 9903 prprrab 14512 isprm2 16719 ismnd 18750 dfgrp2e 18981 pjfval2 21729 neipeltop 23137 cmpfi 23416 isxms2 24458 ishl2 25404 wwlksn0s 29881 clwwlkn1 30060 clwwlkn2 30063 pjimai 32195 bj-snglc 36970 bj-dfid2ALT 37066 bj-epelb 37070 bj-elid6 37171 isbndx 37789 inecmo2 38357 inecmo3 38362 dfrefrel2 38516 dfcnvrefrel2 38531 dfsymrel2 38550 dfsymrel4 38552 dfsymrel5 38553 refsymrels2 38566 refsymrel2 38568 refsymrel3 38569 dftrrel2 38578 elfunsALTV2 38694 elfunsALTV3 38695 elfunsALTV4 38696 elfunsALTV5 38697 eldisjs2 38724 cdlemefrs29pre00 40397 cdlemefrs29cpre1 40400 dihglb2 41344 redvmptabs 42390 elnonrel 43598 pm13.193 44430 dfnbgr6 47843 |
| Copyright terms: Public domain | W3C validator |