![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32i 575 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
3 | ancom 461 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
4 | ancom 461 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anbi1i 624 pm5.36 832 oranabs 998 pm5.61 999 pm5.75 1027 eu6lem 2567 2eu5 2651 ceqsralt 3506 ceqsrexbv 3643 reuind 3748 rabsn 4724 preqsn 4861 dfiun2g 5032 reusv2lem4 5398 reusv2lem5 5399 dfid2 5575 elidinxp 6041 dfoprab2 7463 fsplit 8099 xpsnen 9051 elfpw 9350 rankuni 9854 prprrab 14430 isprm2 16615 ismnd 18624 dfgrp2e 18844 pjfval2 21255 neipeltop 22624 cmpfi 22903 isxms2 23945 ishl2 24878 wwlksn0s 29104 clwwlkn1 29283 clwwlkn2 29286 pjimai 31416 bj-snglc 35838 bj-dfid2ALT 35934 bj-epelb 35938 bj-elid6 36039 isbndx 36638 bianim 37084 inecmo2 37213 inecmo3 37218 dfrefrel2 37373 dfcnvrefrel2 37388 dfsymrel2 37407 dfsymrel4 37409 dfsymrel5 37410 refsymrels2 37423 refsymrel2 37425 refsymrel3 37426 dftrrel2 37435 elfunsALTV2 37551 elfunsALTV3 37552 elfunsALTV4 37553 elfunsALTV5 37554 eldisjs2 37581 cdlemefrs29pre00 39254 cdlemefrs29cpre1 39257 dihglb2 40201 elnonrel 42321 pm13.193 43155 |
Copyright terms: Public domain | W3C validator |