Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
3 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
4 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anbi1i 623 pm5.36 830 oranabs 996 pm5.61 997 pm5.75 1025 eu6lem 2573 2eu5 2657 ceqsralt 3453 ceqsrexbv 3579 reuind 3683 rabsn 4654 preqsn 4789 reusv2lem4 5319 reusv2lem5 5320 dfid2 5482 elidinxp 5940 dfoprab2 7311 fsplit 7928 fsplitOLD 7929 xpsnen 8796 elfpw 9051 rankuni 9552 prprrab 14115 isprm2 16315 ismnd 18303 dfgrp2e 18520 pjfval2 20826 neipeltop 22188 cmpfi 22467 isxms2 23509 ishl2 24439 wwlksn0s 28127 clwwlkn1 28306 clwwlkn2 28309 pjimai 30439 bj-snglc 35086 bj-dfid2ALT 35163 bj-epelb 35167 bj-elid6 35268 isbndx 35867 inecmo2 36415 inecmo3 36420 dfrefrel2 36560 dfcnvrefrel2 36573 dfsymrel2 36590 dfsymrel4 36592 dfsymrel5 36593 refsymrels2 36606 refsymrel2 36608 refsymrel3 36609 dftrrel2 36618 elfunsALTV2 36731 elfunsALTV3 36732 elfunsALTV4 36733 elfunsALTV5 36734 eldisjs2 36761 cdlemefrs29pre00 38336 cdlemefrs29cpre1 38339 dihglb2 39283 elnonrel 41082 pm13.193 41918 |
Copyright terms: Public domain | W3C validator |