| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| 3 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianim 576 anbi1i 624 pm5.36 833 oranabs 1001 pm5.61 1002 pm5.75 1030 eu6lem 2572 2eu5 2655 ceqsralt 3495 ceqsrexbv 3635 reuind 3736 rabsn 4697 preqsn 4838 dfiun2g 5006 reusv2lem4 5371 reusv2lem5 5372 dfid2 5550 elidinxp 6031 dfoprab2 7465 fsplit 8116 xpsnen 9069 elfpw 9366 rankuni 9877 prprrab 14491 isprm2 16701 ismnd 18715 dfgrp2e 18946 pjfval2 21669 neipeltop 23067 cmpfi 23346 isxms2 24387 ishl2 25322 wwlksn0s 29843 clwwlkn1 30022 clwwlkn2 30025 pjimai 32157 bj-snglc 36987 bj-dfid2ALT 37083 bj-epelb 37087 bj-elid6 37188 isbndx 37806 inecmo2 38374 inecmo3 38379 dfrefrel2 38533 dfcnvrefrel2 38548 dfsymrel2 38567 dfsymrel4 38569 dfsymrel5 38570 refsymrels2 38583 refsymrel2 38585 refsymrel3 38586 dftrrel2 38595 elfunsALTV2 38711 elfunsALTV3 38712 elfunsALTV4 38713 elfunsALTV5 38714 eldisjs2 38741 cdlemefrs29pre00 40414 cdlemefrs29cpre1 40417 dihglb2 41361 redvmptabs 42403 elnonrel 43609 pm13.193 44435 dfnbgr6 47870 |
| Copyright terms: Public domain | W3C validator |