![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
3 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
4 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: bianim 576 anbi1i 624 pm5.36 834 oranabs 1001 pm5.61 1002 pm5.75 1030 eu6lem 2570 2eu5 2653 ceqsralt 3513 ceqsrexbv 3655 reuind 3761 rabsn 4725 preqsn 4866 dfiun2g 5034 reusv2lem4 5406 reusv2lem5 5407 dfid2 5584 elidinxp 6063 dfoprab2 7490 fsplit 8140 xpsnen 9093 elfpw 9391 rankuni 9900 prprrab 14508 isprm2 16715 ismnd 18762 dfgrp2e 18993 pjfval2 21746 neipeltop 23152 cmpfi 23431 isxms2 24473 ishl2 25417 wwlksn0s 29890 clwwlkn1 30069 clwwlkn2 30072 pjimai 32204 bj-snglc 36951 bj-dfid2ALT 37047 bj-epelb 37051 bj-elid6 37152 isbndx 37768 inecmo2 38337 inecmo3 38342 dfrefrel2 38496 dfcnvrefrel2 38511 dfsymrel2 38530 dfsymrel4 38532 dfsymrel5 38533 refsymrels2 38546 refsymrel2 38548 refsymrel3 38549 dftrrel2 38558 elfunsALTV2 38674 elfunsALTV3 38675 elfunsALTV4 38676 elfunsALTV5 38677 eldisjs2 38704 cdlemefrs29pre00 40377 cdlemefrs29cpre1 40380 dihglb2 41324 redvmptabs 42368 elnonrel 43574 pm13.193 44406 dfnbgr6 47780 |
Copyright terms: Public domain | W3C validator |