Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32i 575 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
3 | ancom 461 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
4 | ancom 461 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anbi1i 624 pm5.36 831 oranabs 997 pm5.61 998 pm5.75 1026 eu6lem 2572 2eu5 2656 ceqsralt 3472 ceqsrexbv 3595 reuind 3697 rabsn 4665 preqsn 4802 dfiun2g 4971 reusv2lem4 5337 reusv2lem5 5338 dfid2 5507 elidinxp 5968 dfoprab2 7371 fsplit 8000 xpsnen 8895 elfpw 9189 rankuni 9689 prprrab 14256 isprm2 16454 ismnd 18455 dfgrp2e 18672 pjfval2 20987 neipeltop 22351 cmpfi 22630 isxms2 23672 ishl2 24605 wwlksn0s 28334 clwwlkn1 28513 clwwlkn2 28516 pjimai 30646 bj-snglc 35219 bj-dfid2ALT 35296 bj-epelb 35300 bj-elid6 35401 isbndx 36000 bianim 36447 inecmo2 36581 inecmo3 36586 dfrefrel2 36741 dfcnvrefrel2 36756 dfsymrel2 36775 dfsymrel4 36777 dfsymrel5 36778 refsymrels2 36791 refsymrel2 36793 refsymrel3 36794 dftrrel2 36803 elfunsALTV2 36919 elfunsALTV3 36920 elfunsALTV4 36921 elfunsALTV5 36922 eldisjs2 36949 cdlemefrs29pre00 38621 cdlemefrs29cpre1 38624 dihglb2 39568 elnonrel 41421 pm13.193 42257 |
Copyright terms: Public domain | W3C validator |