![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32i 573 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
3 | ancom 459 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
4 | ancom 459 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: anbi1i 622 pm5.36 832 oranabs 997 pm5.61 998 pm5.75 1026 eu6lem 2562 2eu5 2647 ceqsralt 3506 ceqsrexbv 3644 reuind 3750 rabsn 4730 preqsn 4867 dfiun2g 5037 reusv2lem4 5405 reusv2lem5 5406 dfid2 5582 elidinxp 6052 dfoprab2 7485 fsplit 8130 xpsnen 9088 elfpw 9388 rankuni 9896 prprrab 14476 isprm2 16662 ismnd 18706 dfgrp2e 18934 pjfval2 21657 neipeltop 23061 cmpfi 23340 isxms2 24382 ishl2 25326 wwlksn0s 29700 clwwlkn1 29879 clwwlkn2 29882 pjimai 32014 bj-snglc 36489 bj-dfid2ALT 36585 bj-epelb 36589 bj-elid6 36690 isbndx 37296 bianim 37741 inecmo2 37868 inecmo3 37873 dfrefrel2 38027 dfcnvrefrel2 38042 dfsymrel2 38061 dfsymrel4 38063 dfsymrel5 38064 refsymrels2 38077 refsymrel2 38079 refsymrel3 38080 dftrrel2 38089 elfunsALTV2 38205 elfunsALTV3 38206 elfunsALTV4 38207 elfunsALTV5 38208 eldisjs2 38235 cdlemefrs29pre00 39908 cdlemefrs29cpre1 39911 dihglb2 40855 elnonrel 43064 pm13.193 43897 dfnbgr6 47239 |
Copyright terms: Public domain | W3C validator |