| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| 3 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianim 576 anbi1i 624 pm5.36 833 oranabs 1001 pm5.61 1002 pm5.75 1030 eu6lem 2566 2eu5 2649 ceqsralt 3482 ceqsrexbv 3622 reuind 3724 rabsn 4685 preqsn 4826 dfiun2g 4994 reusv2lem4 5356 reusv2lem5 5357 dfid2 5535 elidinxp 6015 dfoprab2 7447 fsplit 8096 xpsnen 9025 elfpw 9305 rankuni 9816 prprrab 14438 isprm2 16652 ismnd 18664 dfgrp2e 18895 pjfval2 21618 neipeltop 23016 cmpfi 23295 isxms2 24336 ishl2 25270 wwlksn0s 29791 clwwlkn1 29970 clwwlkn2 29973 pjimai 32105 bj-snglc 36957 bj-dfid2ALT 37053 bj-epelb 37057 bj-elid6 37158 isbndx 37776 inecmo2 38338 inecmo3 38343 dfrefrel2 38506 dfcnvrefrel2 38521 dfsymrel2 38540 dfsymrel4 38542 dfsymrel5 38543 refsymrels2 38556 refsymrel2 38558 refsymrel3 38559 dftrrel2 38568 elfunsALTV2 38685 elfunsALTV3 38686 elfunsALTV4 38687 elfunsALTV5 38688 eldisjs2 38715 cdlemefrs29pre00 40389 cdlemefrs29cpre1 40392 dihglb2 41336 redvmptabs 42348 elnonrel 43574 pm13.193 44400 dfnbgr6 47857 |
| Copyright terms: Public domain | W3C validator |