Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrel5 Structured version   Visualization version   GIF version

Theorem dfcnvrefrel5 37929
Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.)
Assertion
Ref Expression
dfcnvrefrel5 ( CnvRefRel 𝑅 ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem dfcnvrefrel5
StepHypRef Expression
1 dfcnvrefrel4 37928 . 2 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅))
2 cnvref5 37746 . 2 (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦)))
31, 2bianim 37622 1 ( CnvRefRel 𝑅 ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wss 3944   class class class wbr 5142   I cid 5569  Rel wrel 5677   CnvRefRel wcnvrefrel 37579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-cnvrefrel 37923
This theorem is referenced by:  dfantisymrel5  38158
  Copyright terms: Public domain W3C validator