Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrel5 Structured version   Visualization version   GIF version

Theorem dfcnvrefrel5 38530
Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.)
Assertion
Ref Expression
dfcnvrefrel5 ( CnvRefRel 𝑅 ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem dfcnvrefrel5
StepHypRef Expression
1 dfcnvrefrel4 38529 . 2 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅))
2 cnvref5 38339 . 2 (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦)))
31, 2bianim 576 1 ( CnvRefRel 𝑅 ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑥 = 𝑦) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wss 3903   class class class wbr 5092   I cid 5513  Rel wrel 5624   CnvRefRel wcnvrefrel 38184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-cnvrefrel 38524
This theorem is referenced by:  dfantisymrel5  38760
  Copyright terms: Public domain W3C validator