MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbfal Structured version   Visualization version   GIF version

Theorem nbfal 1617
Description: The negation of a proposition is equivalent to itself being equivalent to . (Contributed by Anthony Hart, 14-Aug-2011.)
Assertion
Ref Expression
nbfal 𝜑 ↔ (𝜑 ↔ ⊥))

Proof of Theorem nbfal
StepHypRef Expression
1 fal 1616 . 2 ¬ ⊥
21nbn 364 1 𝜑 ↔ (𝜑 ↔ ⊥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wfal 1614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-tru 1605  df-fal 1615
This theorem is referenced by:  nulmo  2760  nulmoOLD  2761  zfnuleuOLD  5022  bisym1  33001  aisfina  41974  aifftbifffaibifff  41998  lindslinindsimp2  43249
  Copyright terms: Public domain W3C validator