MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbfal Structured version   Visualization version   GIF version

Theorem nbfal 1553
Description: The negation of a proposition is equivalent to itself being equivalent to . (Contributed by Anthony Hart, 14-Aug-2011.)
Assertion
Ref Expression
nbfal 𝜑 ↔ (𝜑 ↔ ⊥))

Proof of Theorem nbfal
StepHypRef Expression
1 fal 1552 . 2 ¬ ⊥
21nbn 376 1 𝜑 ↔ (𝜑 ↔ ⊥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wfal 1550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-tru 1541  df-fal 1551
This theorem is referenced by:  nulmo  2734  eq0  4242  ab0  4272  eq0rdv  4300  rzal  4401  bisym1  34157  wl-1xor  35179  wl-1mintru1  35185  aisfina  43857  aifftbifffaibifff  43881  lindslinindsimp2  45237
  Copyright terms: Public domain W3C validator