| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbfal | Structured version Visualization version GIF version | ||
| Description: The negation of a proposition is equivalent to itself being equivalent to ⊥. (Contributed by Anthony Hart, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| nbfal | ⊢ (¬ 𝜑 ↔ (𝜑 ↔ ⊥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1554 | . 2 ⊢ ¬ ⊥ | |
| 2 | 1 | nbn 372 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 ↔ ⊥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: nulmo 2712 eq0 4325 ab0 4355 eq0rdv 4382 rzal 4484 bisym1 36437 wl-1xor 37500 wl-1mintru1 37506 aisfina 46927 aifftbifffaibifff 46951 lindslinindsimp2 48439 |
| Copyright terms: Public domain | W3C validator |