![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbfal | Structured version Visualization version GIF version |
Description: The negation of a proposition is equivalent to itself being equivalent to ⊥. (Contributed by Anthony Hart, 14-Aug-2011.) |
Ref | Expression |
---|---|
nbfal | ⊢ (¬ 𝜑 ↔ (𝜑 ↔ ⊥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1616 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | nbn 364 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 ↔ ⊥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ⊥wfal 1614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-tru 1605 df-fal 1615 |
This theorem is referenced by: nulmo 2760 nulmoOLD 2761 zfnuleuOLD 5022 bisym1 33001 aisfina 41974 aifftbifffaibifff 41998 lindslinindsimp2 43249 |
Copyright terms: Public domain | W3C validator |