Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbfal | Structured version Visualization version GIF version |
Description: The negation of a proposition is equivalent to itself being equivalent to ⊥. (Contributed by Anthony Hart, 14-Aug-2011.) |
Ref | Expression |
---|---|
nbfal | ⊢ (¬ 𝜑 ↔ (𝜑 ↔ ⊥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1555 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | nbn 372 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 ↔ ⊥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊥wfal 1553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1544 df-fal 1554 |
This theorem is referenced by: nulmo 2715 eq0 4282 ab0 4313 ab0OLD 4314 eq0rdv 4343 rzal 4444 bisym1 34587 wl-1xor 35632 wl-1mintru1 35638 aisfina 44344 aifftbifffaibifff 44368 lindslinindsimp2 45756 |
Copyright terms: Public domain | W3C validator |