Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2exbi Structured version   Visualization version   GIF version

Theorem bj-2exbi 34724
Description: Closed form of 2exbii 1852. (Contributed by BJ, 6-May-2019.)
Assertion
Ref Expression
bj-2exbi (∀𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓))

Proof of Theorem bj-2exbi
StepHypRef Expression
1 exbi 1850 . 2 (∀𝑦(𝜑𝜓) → (∃𝑦𝜑 ↔ ∃𝑦𝜓))
21alexbii 1836 1 (∀𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  bj-3exbi  34725
  Copyright terms: Public domain W3C validator