Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axc11nv Structured version   Visualization version   GIF version

Theorem bj-axc11nv 34989
Description: Version of axc11n 2426 with a disjoint variable condition; instance of aevlem 2058. TODO: delete after checking surrounding theorems. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-axc11nv (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-axc11nv
StepHypRef Expression
1 aevlem 2058 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator