Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsalhv Structured version   Visualization version   GIF version

Theorem bj-equsalhv 34915
Description: Version of equsalh 2420 with a disjoint variable condition, which does not require ax-13 2372. Remark: this is the same as equsalhw 2291. TODO: delete after moving the following paragraph somewhere.

Remarks: equsexvw 2009 has been moved to Main; Theorem ax13lem2 2376 has a DV version which is a simple consequence of ax5e 1916; Theorems nfeqf2 2377, dveeq2 2378, nfeqf1 2379, dveeq1 2380, nfeqf 2381, axc9 2382, ax13 2375, have dv versions which are simple consequences of ax-5 1914. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypotheses
Ref Expression
bj-equsalhv.nf (𝜓 → ∀𝑥𝜓)
bj-equsalhv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-equsalhv (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem bj-equsalhv
StepHypRef Expression
1 bj-equsalhv.nf . . 3 (𝜓 → ∀𝑥𝜓)
21nf5i 2144 . 2 𝑥𝜓
3 bj-equsalhv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3equsalv 2262 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator