Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc11n | Structured version Visualization version GIF version |
Description: Derive set.mm's original ax-c11n 36500 from others. Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). If a disjoint variable condition is added on 𝑥 and 𝑦, then this becomes an instance of aevlem 2061. Use aecom 2439 instead when this does not lengthen the proof. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 2-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc11n | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dveeq1 2388 | . . . . 5 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) | |
2 | 1 | com12 32 | . . . 4 ⊢ (𝑥 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑥 = 𝑧)) |
3 | axc11r 2376 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑥 𝑥 = 𝑧)) | |
4 | aev 2063 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥) | |
5 | 3, 4 | syl6 35 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥)) |
6 | 2, 5 | syl9 77 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥))) |
7 | ax6evr 2023 | . . 3 ⊢ ∃𝑧 𝑥 = 𝑧 | |
8 | 6, 7 | exlimiiv 1933 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥)) |
9 | 8 | pm2.18d 127 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-10 2143 ax-12 2176 ax-13 2380 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1783 df-nf 1787 |
This theorem is referenced by: aecom 2439 axi10 2727 wl-hbae1 35240 wl-ax11-lem3 35300 wl-ax11-lem8 35305 2sb5ndVD 42035 e2ebindVD 42037 e2ebindALT 42054 2sb5ndALT 42057 |
Copyright terms: Public domain | W3C validator |