MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11n Structured version   Visualization version   GIF version

Theorem axc11n 2407
Description: Derive set.mm's original ax-c11n 35576 from others. Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). If a disjoint variable condition is added on 𝑥 and 𝑦, then this becomes an instance of aevlem 2035. Use aecom 2408 instead when this does not lengthen the proof. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 2-Jul-2021.)
Assertion
Ref Expression
axc11n (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Proof of Theorem axc11n
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dveeq1 2355 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
21com12 32 . . . 4 (𝑥 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑥 = 𝑧))
3 axc11r 2345 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑥 𝑥 = 𝑧))
4 aev 2037 . . . . 5 (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥)
53, 4syl6 35 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥))
62, 5syl9 77 . . 3 (𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥)))
7 ax6evr 2003 . . 3 𝑧 𝑥 = 𝑧
86, 7exlimiiv 1913 . 2 (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥))
98pm2.18d 127 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-10 2114  ax-12 2143  ax-13 2346
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1766  df-nf 1770
This theorem is referenced by:  aecom  2408  axi10  2766  wl-hbae1  34313  wl-ax11-lem3  34371  wl-ax11-lem8  34376  2sb5ndVD  40804  e2ebindVD  40806  e2ebindALT  40823  2sb5ndALT  40826
  Copyright terms: Public domain W3C validator