![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc11n | Structured version Visualization version GIF version |
Description: Derive set.mm's original ax-c11n 35576 from others. Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). If a disjoint variable condition is added on 𝑥 and 𝑦, then this becomes an instance of aevlem 2035. Use aecom 2408 instead when this does not lengthen the proof. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 2-Jul-2021.) |
Ref | Expression |
---|---|
axc11n | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dveeq1 2355 | . . . . 5 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) | |
2 | 1 | com12 32 | . . . 4 ⊢ (𝑥 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑥 = 𝑧)) |
3 | axc11r 2345 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑥 𝑥 = 𝑧)) | |
4 | aev 2037 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥) | |
5 | 3, 4 | syl6 35 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥)) |
6 | 2, 5 | syl9 77 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥))) |
7 | ax6evr 2003 | . . 3 ⊢ ∃𝑧 𝑥 = 𝑧 | |
8 | 6, 7 | exlimiiv 1913 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥)) |
9 | 8 | pm2.18d 127 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-10 2114 ax-12 2143 ax-13 2346 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-nf 1770 |
This theorem is referenced by: aecom 2408 axi10 2766 wl-hbae1 34313 wl-ax11-lem3 34371 wl-ax11-lem8 34376 2sb5ndVD 40804 e2ebindVD 40806 e2ebindALT 40823 2sb5ndALT 40826 |
Copyright terms: Public domain | W3C validator |