MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11n Structured version   Visualization version   GIF version

Theorem axc11n 2426
Description: Derive set.mm's original ax-c11n 36902 from others. Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). If a disjoint variable condition is added on 𝑥 and 𝑦, then this becomes an instance of aevlem 2058. Use aecom 2427 instead when this does not lengthen the proof. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 2-Jul-2021.) (New usage is discouraged.)
Assertion
Ref Expression
axc11n (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Proof of Theorem axc11n
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dveeq1 2380 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
21com12 32 . . . 4 (𝑥 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑥 = 𝑧))
3 axc11r 2366 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑥 𝑥 = 𝑧))
4 aev 2060 . . . . 5 (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥)
53, 4syl6 35 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥))
62, 5syl9 77 . . 3 (𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥)))
7 ax6evr 2018 . . 3 𝑧 𝑥 = 𝑧
86, 7exlimiiv 1934 . 2 (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥))
98pm2.18d 127 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787
This theorem is referenced by:  aecom  2427  axi10  2706  wl-hbae1  35678  wl-ax11-lem3  35738  wl-ax11-lem8  35743  2sb5ndVD  42530  e2ebindVD  42532  e2ebindALT  42549  2sb5ndALT  42552
  Copyright terms: Public domain W3C validator