| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc11n | Structured version Visualization version GIF version | ||
| Description: Derive set.mm's original ax-c11n 38854 from others. Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). If a disjoint variable condition is added on 𝑥 and 𝑦, then this becomes an instance of aevlem 2056. Use aecom 2425 instead when this does not lengthen the proof. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 2-Jul-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc11n | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dveeq1 2378 | . . . . 5 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) | |
| 2 | 1 | com12 32 | . . . 4 ⊢ (𝑥 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑥 = 𝑧)) |
| 3 | axc11r 2366 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑥 𝑥 = 𝑧)) | |
| 4 | aev 2058 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥) | |
| 5 | 3, 4 | syl6 35 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥)) |
| 6 | 2, 5 | syl9 77 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥))) |
| 7 | ax6evr 2015 | . . 3 ⊢ ∃𝑧 𝑥 = 𝑧 | |
| 8 | 6, 7 | exlimiiv 1931 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥)) |
| 9 | 8 | pm2.18d 127 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: aecom 2425 axi10 2698 wl-hbae1 37480 wl-ax11-lem3 37548 wl-ax11-lem8 37553 2sb5ndVD 44872 e2ebindVD 44874 e2ebindALT 44891 2sb5ndALT 44894 |
| Copyright terms: Public domain | W3C validator |