Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-bi3ant | Structured version Visualization version GIF version |
Description: This used to be in the main part. (Contributed by Wolf Lammen, 14-May-2013.) (Revised by BJ, 14-Jun-2019.) |
Ref | Expression |
---|---|
bj-bi3ant.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
bj-bi3ant | ⊢ (((𝜃 → 𝜏) → 𝜑) → (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 214 | . . 3 ⊢ ((𝜃 ↔ 𝜏) → (𝜃 → 𝜏)) | |
2 | 1 | imim1i 63 | . 2 ⊢ (((𝜃 → 𝜏) → 𝜑) → ((𝜃 ↔ 𝜏) → 𝜑)) |
3 | biimpr 219 | . . 3 ⊢ ((𝜃 ↔ 𝜏) → (𝜏 → 𝜃)) | |
4 | 3 | imim1i 63 | . 2 ⊢ (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜓)) |
5 | bj-bi3ant.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
6 | 5 | imim3i 64 | . 2 ⊢ (((𝜃 ↔ 𝜏) → 𝜑) → (((𝜃 ↔ 𝜏) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) |
7 | 2, 4, 6 | syl2im 40 | 1 ⊢ (((𝜃 → 𝜏) → 𝜑) → (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bj-bisym 34772 |
Copyright terms: Public domain | W3C validator |