| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-andnotim | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing a certain ternary connective. Note the respective positions of the three formulas on each side of the biconditional. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-andnotim | ⊢ (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imor 854 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (¬ (𝜑 ∧ ¬ 𝜓) ∨ 𝜒)) | |
| 2 | iman 401 | . . . . 5 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 3 | 2 | biimpri 228 | . . . 4 ⊢ (¬ (𝜑 ∧ ¬ 𝜓) → (𝜑 → 𝜓)) |
| 4 | 3 | orim1i 910 | . . 3 ⊢ ((¬ (𝜑 ∧ ¬ 𝜓) ∨ 𝜒) → ((𝜑 → 𝜓) ∨ 𝜒)) |
| 5 | 1, 4 | sylbi 217 | . 2 ⊢ (((𝜑 ∧ ¬ 𝜓) → 𝜒) → ((𝜑 → 𝜓) ∨ 𝜒)) |
| 6 | pm2.24 124 | . . . . 5 ⊢ (𝜓 → (¬ 𝜓 → 𝜒)) | |
| 7 | 6 | imim2i 16 | . . . 4 ⊢ ((𝜑 → 𝜓) → (𝜑 → (¬ 𝜓 → 𝜒))) |
| 8 | 7 | impd 410 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜑 ∧ ¬ 𝜓) → 𝜒)) |
| 9 | ax-1 6 | . . 3 ⊢ (𝜒 → ((𝜑 ∧ ¬ 𝜓) → 𝜒)) | |
| 10 | 8, 9 | jaoi 858 | . 2 ⊢ (((𝜑 → 𝜓) ∨ 𝜒) → ((𝜑 ∧ ¬ 𝜓) → 𝜒)) |
| 11 | 5, 10 | impbii 209 | 1 ⊢ (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |