Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-andnotim Structured version   Visualization version   GIF version

Theorem bj-andnotim 34007
 Description: Two ways of expressing a certain ternary connective. Note the respective positions of the three formulas on each side of the biconditional. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-andnotim (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))

Proof of Theorem bj-andnotim
StepHypRef Expression
1 imor 850 . . 3 (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (¬ (𝜑 ∧ ¬ 𝜓) ∨ 𝜒))
2 iman 405 . . . . 5 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
32biimpri 231 . . . 4 (¬ (𝜑 ∧ ¬ 𝜓) → (𝜑𝜓))
43orim1i 907 . . 3 ((¬ (𝜑 ∧ ¬ 𝜓) ∨ 𝜒) → ((𝜑𝜓) ∨ 𝜒))
51, 4sylbi 220 . 2 (((𝜑 ∧ ¬ 𝜓) → 𝜒) → ((𝜑𝜓) ∨ 𝜒))
6 pm2.24 124 . . . . 5 (𝜓 → (¬ 𝜓𝜒))
76imim2i 16 . . . 4 ((𝜑𝜓) → (𝜑 → (¬ 𝜓𝜒)))
87impd 414 . . 3 ((𝜑𝜓) → ((𝜑 ∧ ¬ 𝜓) → 𝜒))
9 ax-1 6 . . 3 (𝜒 → ((𝜑 ∧ ¬ 𝜓) → 𝜒))
108, 9jaoi 854 . 2 (((𝜑𝜓) ∨ 𝜒) → ((𝜑 ∧ ¬ 𝜓) → 𝜒))
115, 10impbii 212 1 (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator