![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version |
Description: Replace two antecedents. Implication-only version of syl2an 589. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl2imc 41 sylc 65 ax13ALT 2391 vtoclr 5414 funopg 6171 abnex 7245 xpider 8103 undifixp 8232 onsdominel 8399 fodomr 8401 wemaplem2 8743 rankuni2b 9015 infxpenlem 9171 dfac8b 9189 ac10ct 9192 alephordi 9232 infdif 9368 cfflb 9418 alephval2 9731 tskxpss 9931 tskcard 9940 ingru 9974 grur1 9979 grothac 9989 suplem1pr 10211 mulgt0sr 10264 ixxssixx 12505 difelfzle 12775 swrdnd0 13756 climrlim2 14690 qshash 14967 gcdcllem3 15633 vdwlem13 16105 opsrtoslem2 19885 ocvsscon 20422 txcnp 21836 t0kq 22034 filconn 22099 filuni 22101 alexsubALTlem3 22265 rectbntr0 23047 iscau4 23489 cfilres 23506 lmcau 23523 bcthlem2 23535 subfacp1lem6 31770 cvmsdisj 31855 meran1 32997 bj-bi3ant 33157 bj-cbv3ta 33302 bj-2upleq 33576 bj-intss 33630 bj-snmoore 33645 relowlssretop 33809 poimirlem30 34070 poimirlem31 34071 caushft 34186 ax13fromc9 35065 harinf 38570 ntrk0kbimka 39303 onfrALTlem3 39714 onfrALTlem2 39716 e222 39815 e111 39853 e333 39912 bitr3VD 40028 prpair 42450 onsetrec 43569 aacllem 43663 |
Copyright terms: Public domain | W3C validator |