![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version |
Description: Replace two antecedents. Implication-only version of syl2an 595. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2240 ax13ALT 2423 r19.30 3119 intss2 5111 vtoclr 5739 funopg 6582 abnex 7748 xpider 8788 undifixp 8934 onsdominel 9132 fodomr 9134 wemaplem2 9548 rankuni2b 9854 infxpenlem 10014 dfac8b 10032 ac10ct 10035 alephordi 10075 infdif 10210 cfflb 10260 alephval2 10573 tskxpss 10773 tskcard 10782 ingru 10816 grur1 10821 grothac 10831 suplem1pr 11053 mulgt0sr 11106 ixxssixx 13345 difelfzle 13621 swrdnd0 14614 climrlim2 15498 qshash 15780 gcdcllem3 16449 vdwlem13 16933 ocvsscon 21538 opsrtoslem2 21928 txcnp 23444 t0kq 23642 filconn 23707 filuni 23709 alexsubALTlem3 23873 rectbntr0 24668 iscau4 25127 cfilres 25144 lmcau 25161 bcthlem2 25173 subfacp1lem6 34640 cvmsdisj 34725 meran1 35760 bj-bi3ant 35931 bj-cbv3ta 36128 bj-2upleq 36357 bj-ismooredr2 36455 bj-snmoore 36458 bj-isclm 36636 relowlssretop 36708 poimirlem30 36982 poimirlem31 36983 caushft 37093 partimeq 38143 ax13fromc9 38240 harinf 42236 ntrk0kbimka 43253 onfrALTlem3 43768 onfrALTlem2 43770 e222 43860 e111 43898 e333 43957 bitr3VD 44073 disjinfi 44350 prpair 46628 onsetrec 47915 aacllem 48010 |
Copyright terms: Public domain | W3C validator |