| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version | ||
| Description: Replace two antecedents. Implication-only version of syl2an 596. (Contributed by Wolf Lammen, 14-May-2013.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2250 ax13ALT 2423 r19.30 3096 intss2 5060 vtoclr 5686 funopg 6520 feldmfvelcdm 7024 abnex 7697 xpider 8722 undifixp 8868 onsdominel 9050 fodomr 9052 fodomfir 9237 wemaplem2 9458 rankuni2b 9768 infxpenlem 9926 dfac8b 9944 ac10ct 9947 alephordi 9987 infdif 10121 cfflb 10172 alephval2 10485 tskxpss 10685 tskcard 10694 ingru 10728 grur1 10733 grothac 10743 suplem1pr 10965 mulgt0sr 11018 ixxssixx 13280 difelfzle 13562 swrdnd0 14582 climrlim2 15472 qshash 15752 gcdcllem3 16430 vdwlem13 16923 ocvsscon 21600 opsrtoslem2 21979 txcnp 23523 t0kq 23721 filconn 23786 filuni 23788 alexsubALTlem3 23952 rectbntr0 24737 iscau4 25195 cfilres 25212 lmcau 25229 bcthlem2 25241 onvf1odlem2 35076 subfacp1lem6 35157 cvmsdisj 35242 meran1 36384 bj-bi3ant 36562 bj-cbv3ta 36759 bj-2upleq 36985 bj-ismooredr2 37083 bj-snmoore 37086 bj-isclm 37264 relowlssretop 37336 poimirlem30 37629 poimirlem31 37630 caushft 37740 partimeq 38786 ax13fromc9 38884 harinf 43007 ntrk0kbimka 44012 onfrALTlem3 44518 onfrALTlem2 44520 e222 44610 e111 44648 e333 44706 bitr3VD 44822 disjinfi 45170 prpair 47486 onsetrec 49681 aacllem 49774 |
| Copyright terms: Public domain | W3C validator |