Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version |
Description: Replace two antecedents. Implication-only version of syl2an 596. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2241 ax13ALT 2425 r19.30 3268 intss2 5037 vtoclr 5650 funopg 6468 abnex 7607 xpider 8577 undifixp 8722 onsdominel 8913 fodomr 8915 wemaplem2 9306 rankuni2b 9611 infxpenlem 9769 dfac8b 9787 ac10ct 9790 alephordi 9830 infdif 9965 cfflb 10015 alephval2 10328 tskxpss 10528 tskcard 10537 ingru 10571 grur1 10576 grothac 10586 suplem1pr 10808 mulgt0sr 10861 ixxssixx 13093 difelfzle 13369 swrdnd0 14370 climrlim2 15256 qshash 15539 gcdcllem3 16208 vdwlem13 16694 ocvsscon 20880 opsrtoslem2 21263 txcnp 22771 t0kq 22969 filconn 23034 filuni 23036 alexsubALTlem3 23200 rectbntr0 23995 iscau4 24443 cfilres 24460 lmcau 24477 bcthlem2 24489 subfacp1lem6 33147 cvmsdisj 33232 meran1 34600 bj-bi3ant 34771 bj-cbv3ta 34968 bj-2upleq 35202 bj-ismooredr2 35281 bj-snmoore 35284 bj-isclm 35462 relowlssretop 35534 poimirlem30 35807 poimirlem31 35808 caushft 35919 ax13fromc9 36920 harinf 40856 ntrk0kbimka 41649 onfrALTlem3 42164 onfrALTlem2 42166 e222 42256 e111 42294 e333 42353 bitr3VD 42469 disjinfi 42731 prpair 44953 onsetrec 46413 aacllem 46505 |
Copyright terms: Public domain | W3C validator |