| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version | ||
| Description: Replace two antecedents. Implication-only version of syl2an 596. (Contributed by Wolf Lammen, 14-May-2013.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2251 ax13ALT 2424 r19.30 3097 intss2 5054 vtoclr 5677 funopg 6511 feldmfvelcdm 7014 abnex 7685 xpider 8707 undifixp 8853 onsdominel 9034 fodomr 9036 fodomfir 9207 wemaplem2 9428 rankuni2b 9738 infxpenlem 9896 dfac8b 9914 ac10ct 9917 alephordi 9957 infdif 10091 cfflb 10142 alephval2 10455 tskxpss 10655 tskcard 10664 ingru 10698 grur1 10703 grothac 10713 suplem1pr 10935 mulgt0sr 10988 ixxssixx 13251 difelfzle 13533 swrdnd0 14557 climrlim2 15446 qshash 15726 gcdcllem3 16404 vdwlem13 16897 ocvsscon 21605 opsrtoslem2 21984 txcnp 23528 t0kq 23726 filconn 23791 filuni 23793 alexsubALTlem3 23957 rectbntr0 24741 iscau4 25199 cfilres 25216 lmcau 25233 bcthlem2 25245 onvf1odlem2 35116 subfacp1lem6 35197 cvmsdisj 35282 meran1 36424 bj-bi3ant 36602 bj-cbv3ta 36799 bj-2upleq 37025 bj-ismooredr2 37123 bj-snmoore 37126 bj-isclm 37304 relowlssretop 37376 poimirlem30 37669 poimirlem31 37670 caushft 37780 partimeq 38826 ax13fromc9 38924 harinf 43046 ntrk0kbimka 44051 onfrALTlem3 44556 onfrALTlem2 44558 e222 44648 e111 44686 e333 44744 bitr3VD 44860 disjinfi 45208 prpair 47511 onsetrec 49719 aacllem 49812 |
| Copyright terms: Public domain | W3C validator |