MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2im Structured version   Visualization version   GIF version

Theorem syl2im 40
Description: Replace two antecedents. Implication-only version of syl2an 596. (Contributed by Wolf Lammen, 14-May-2013.)
Hypotheses
Ref Expression
syl2im.1 (𝜑𝜓)
syl2im.2 (𝜒𝜃)
syl2im.3 (𝜓 → (𝜃𝜏))
Assertion
Ref Expression
syl2im (𝜑 → (𝜒𝜏))

Proof of Theorem syl2im
StepHypRef Expression
1 syl2im.1 . 2 (𝜑𝜓)
2 syl2im.2 . . 3 (𝜒𝜃)
3 syl2im.3 . . 3 (𝜓 → (𝜃𝜏))
42, 3syl5 34 . 2 (𝜓 → (𝜒𝜏))
51, 4syl 17 1 (𝜑 → (𝜒𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syl2imc  41  sylc  65  sbequ2  2250  ax13ALT  2424  r19.30  3101  intss2  5074  vtoclr  5703  funopg  6552  feldmfvelcdm  7060  abnex  7735  xpider  8763  undifixp  8909  onsdominel  9095  fodomr  9097  fodomfir  9285  wemaplem2  9506  rankuni2b  9812  infxpenlem  9972  dfac8b  9990  ac10ct  9993  alephordi  10033  infdif  10167  cfflb  10218  alephval2  10531  tskxpss  10731  tskcard  10740  ingru  10774  grur1  10779  grothac  10789  suplem1pr  11011  mulgt0sr  11064  ixxssixx  13326  difelfzle  13608  swrdnd0  14628  climrlim2  15519  qshash  15799  gcdcllem3  16477  vdwlem13  16970  ocvsscon  21590  opsrtoslem2  21969  txcnp  23513  t0kq  23711  filconn  23776  filuni  23778  alexsubALTlem3  23942  rectbntr0  24727  iscau4  25185  cfilres  25202  lmcau  25219  bcthlem2  25231  subfacp1lem6  35172  cvmsdisj  35257  meran1  36394  bj-bi3ant  36572  bj-cbv3ta  36769  bj-2upleq  36995  bj-ismooredr2  37093  bj-snmoore  37096  bj-isclm  37274  relowlssretop  37346  poimirlem30  37639  poimirlem31  37640  caushft  37750  partimeq  38796  ax13fromc9  38894  harinf  43016  ntrk0kbimka  44021  onfrALTlem3  44527  onfrALTlem2  44529  e222  44619  e111  44657  e333  44715  bitr3VD  44831  disjinfi  45179  prpair  47492  onsetrec  49687  aacllem  49780
  Copyright terms: Public domain W3C validator