Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version |
Description: Replace two antecedents. Implication-only version of syl2an 595. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2244 ax13ALT 2425 r19.30 3265 intss2 5033 vtoclr 5641 funopg 6452 abnex 7585 xpider 8535 undifixp 8680 onsdominel 8862 fodomr 8864 wemaplem2 9236 rankuni2b 9542 infxpenlem 9700 dfac8b 9718 ac10ct 9721 alephordi 9761 infdif 9896 cfflb 9946 alephval2 10259 tskxpss 10459 tskcard 10468 ingru 10502 grur1 10507 grothac 10517 suplem1pr 10739 mulgt0sr 10792 ixxssixx 13022 difelfzle 13298 swrdnd0 14298 climrlim2 15184 qshash 15467 gcdcllem3 16136 vdwlem13 16622 ocvsscon 20792 opsrtoslem2 21173 txcnp 22679 t0kq 22877 filconn 22942 filuni 22944 alexsubALTlem3 23108 rectbntr0 23901 iscau4 24348 cfilres 24365 lmcau 24382 bcthlem2 24394 subfacp1lem6 33047 cvmsdisj 33132 meran1 34527 bj-bi3ant 34698 bj-cbv3ta 34895 bj-2upleq 35129 bj-ismooredr2 35208 bj-snmoore 35211 bj-isclm 35389 relowlssretop 35461 poimirlem30 35734 poimirlem31 35735 caushft 35846 ax13fromc9 36847 harinf 40772 ntrk0kbimka 41538 onfrALTlem3 42053 onfrALTlem2 42055 e222 42145 e111 42183 e333 42242 bitr3VD 42358 disjinfi 42620 prpair 44841 onsetrec 46299 aacllem 46391 |
Copyright terms: Public domain | W3C validator |