![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version |
Description: Replace two antecedents. Implication-only version of syl2an 596. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2241 ax13ALT 2424 r19.30 3120 intss2 5111 vtoclr 5739 funopg 6582 abnex 7743 xpider 8781 undifixp 8927 onsdominel 9125 fodomr 9127 wemaplem2 9541 rankuni2b 9847 infxpenlem 10007 dfac8b 10025 ac10ct 10028 alephordi 10068 infdif 10203 cfflb 10253 alephval2 10566 tskxpss 10766 tskcard 10775 ingru 10809 grur1 10814 grothac 10824 suplem1pr 11046 mulgt0sr 11099 ixxssixx 13337 difelfzle 13613 swrdnd0 14606 climrlim2 15490 qshash 15772 gcdcllem3 16441 vdwlem13 16925 ocvsscon 21227 opsrtoslem2 21616 txcnp 23123 t0kq 23321 filconn 23386 filuni 23388 alexsubALTlem3 23552 rectbntr0 24347 iscau4 24795 cfilres 24812 lmcau 24829 bcthlem2 24841 subfacp1lem6 34171 cvmsdisj 34256 meran1 35291 bj-bi3ant 35462 bj-cbv3ta 35659 bj-2upleq 35888 bj-ismooredr2 35986 bj-snmoore 35989 bj-isclm 36167 relowlssretop 36239 poimirlem30 36513 poimirlem31 36514 caushft 36624 partimeq 37674 ax13fromc9 37771 harinf 41763 ntrk0kbimka 42780 onfrALTlem3 43295 onfrALTlem2 43297 e222 43387 e111 43425 e333 43484 bitr3VD 43600 disjinfi 43881 prpair 46159 onsetrec 47743 aacllem 47838 |
Copyright terms: Public domain | W3C validator |