| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version | ||
| Description: Replace two antecedents. Implication-only version of syl2an 596. (Contributed by Wolf Lammen, 14-May-2013.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2249 ax13ALT 2429 r19.30 3107 intss2 5084 vtoclr 5717 funopg 6569 feldmfvelcdm 7075 abnex 7749 xpider 8800 undifixp 8946 onsdominel 9138 fodomr 9140 fodomfir 9338 wemaplem2 9559 rankuni2b 9865 infxpenlem 10025 dfac8b 10043 ac10ct 10046 alephordi 10086 infdif 10220 cfflb 10271 alephval2 10584 tskxpss 10784 tskcard 10793 ingru 10827 grur1 10832 grothac 10842 suplem1pr 11064 mulgt0sr 11117 ixxssixx 13374 difelfzle 13656 swrdnd0 14673 climrlim2 15561 qshash 15841 gcdcllem3 16518 vdwlem13 17011 ocvsscon 21633 opsrtoslem2 22012 txcnp 23556 t0kq 23754 filconn 23819 filuni 23821 alexsubALTlem3 23985 rectbntr0 24770 iscau4 25229 cfilres 25246 lmcau 25263 bcthlem2 25275 subfacp1lem6 35153 cvmsdisj 35238 meran1 36375 bj-bi3ant 36553 bj-cbv3ta 36750 bj-2upleq 36976 bj-ismooredr2 37074 bj-snmoore 37077 bj-isclm 37255 relowlssretop 37327 poimirlem30 37620 poimirlem31 37621 caushft 37731 partimeq 38773 ax13fromc9 38870 harinf 43005 ntrk0kbimka 44010 onfrALTlem3 44517 onfrALTlem2 44519 e222 44609 e111 44647 e333 44705 bitr3VD 44821 disjinfi 45164 prpair 47463 onsetrec 49520 aacllem 49613 |
| Copyright terms: Public domain | W3C validator |