![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version |
Description: Replace two antecedents. Implication-only version of syl2an 596. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2246 ax13ALT 2427 r19.30 3117 intss2 5112 vtoclr 5751 funopg 6601 feldmfvelcdm 7105 abnex 7775 xpider 8826 undifixp 8972 onsdominel 9164 fodomr 9166 fodomfir 9365 wemaplem2 9584 rankuni2b 9890 infxpenlem 10050 dfac8b 10068 ac10ct 10071 alephordi 10111 infdif 10245 cfflb 10296 alephval2 10609 tskxpss 10809 tskcard 10818 ingru 10852 grur1 10857 grothac 10867 suplem1pr 11089 mulgt0sr 11142 ixxssixx 13397 difelfzle 13677 swrdnd0 14691 climrlim2 15579 qshash 15859 gcdcllem3 16534 vdwlem13 17026 ocvsscon 21710 opsrtoslem2 22097 txcnp 23643 t0kq 23841 filconn 23906 filuni 23908 alexsubALTlem3 24072 rectbntr0 24867 iscau4 25326 cfilres 25343 lmcau 25360 bcthlem2 25372 subfacp1lem6 35169 cvmsdisj 35254 meran1 36393 bj-bi3ant 36571 bj-cbv3ta 36768 bj-2upleq 36994 bj-ismooredr2 37092 bj-snmoore 37095 bj-isclm 37273 relowlssretop 37345 poimirlem30 37636 poimirlem31 37637 caushft 37747 partimeq 38790 ax13fromc9 38887 harinf 43022 ntrk0kbimka 44028 onfrALTlem3 44541 onfrALTlem2 44543 e222 44633 e111 44671 e333 44730 bitr3VD 44846 disjinfi 45134 prpair 47425 onsetrec 48938 aacllem 49031 |
Copyright terms: Public domain | W3C validator |