| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version | ||
| Description: Replace two antecedents. Implication-only version of syl2an 596. (Contributed by Wolf Lammen, 14-May-2013.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2250 ax13ALT 2424 r19.30 3101 intss2 5074 vtoclr 5703 funopg 6552 feldmfvelcdm 7060 abnex 7735 xpider 8763 undifixp 8909 onsdominel 9095 fodomr 9097 fodomfir 9285 wemaplem2 9506 rankuni2b 9812 infxpenlem 9972 dfac8b 9990 ac10ct 9993 alephordi 10033 infdif 10167 cfflb 10218 alephval2 10531 tskxpss 10731 tskcard 10740 ingru 10774 grur1 10779 grothac 10789 suplem1pr 11011 mulgt0sr 11064 ixxssixx 13326 difelfzle 13608 swrdnd0 14628 climrlim2 15519 qshash 15799 gcdcllem3 16477 vdwlem13 16970 ocvsscon 21590 opsrtoslem2 21969 txcnp 23513 t0kq 23711 filconn 23776 filuni 23778 alexsubALTlem3 23942 rectbntr0 24727 iscau4 25185 cfilres 25202 lmcau 25219 bcthlem2 25231 subfacp1lem6 35172 cvmsdisj 35257 meran1 36394 bj-bi3ant 36572 bj-cbv3ta 36769 bj-2upleq 36995 bj-ismooredr2 37093 bj-snmoore 37096 bj-isclm 37274 relowlssretop 37346 poimirlem30 37639 poimirlem31 37640 caushft 37750 partimeq 38796 ax13fromc9 38894 harinf 43016 ntrk0kbimka 44021 onfrALTlem3 44527 onfrALTlem2 44529 e222 44619 e111 44657 e333 44715 bitr3VD 44831 disjinfi 45179 prpair 47492 onsetrec 49687 aacllem 49780 |
| Copyright terms: Public domain | W3C validator |