![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version |
Description: Replace two antecedents. Implication-only version of syl2an 595. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2233 ax13ALT 2416 r19.30 3112 intss2 5102 vtoclr 5730 funopg 6573 abnex 7738 xpider 8779 undifixp 8925 onsdominel 9123 fodomr 9125 wemaplem2 9539 rankuni2b 9845 infxpenlem 10005 dfac8b 10023 ac10ct 10026 alephordi 10066 infdif 10201 cfflb 10251 alephval2 10564 tskxpss 10764 tskcard 10773 ingru 10807 grur1 10812 grothac 10822 suplem1pr 11044 mulgt0sr 11097 ixxssixx 13336 difelfzle 13612 swrdnd0 14605 climrlim2 15489 qshash 15771 gcdcllem3 16441 vdwlem13 16927 ocvsscon 21538 opsrtoslem2 21929 txcnp 23448 t0kq 23646 filconn 23711 filuni 23713 alexsubALTlem3 23877 rectbntr0 24672 iscau4 25131 cfilres 25148 lmcau 25165 bcthlem2 25177 subfacp1lem6 34667 cvmsdisj 34752 meran1 35787 bj-bi3ant 35958 bj-cbv3ta 36155 bj-2upleq 36384 bj-ismooredr2 36482 bj-snmoore 36485 bj-isclm 36663 relowlssretop 36735 poimirlem30 37012 poimirlem31 37013 caushft 37123 partimeq 38173 ax13fromc9 38270 harinf 42287 ntrk0kbimka 43304 onfrALTlem3 43819 onfrALTlem2 43821 e222 43911 e111 43949 e333 44008 bitr3VD 44124 disjinfi 44401 prpair 46679 onsetrec 47965 aacllem 48060 |
Copyright terms: Public domain | W3C validator |