Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version |
Description: Replace two antecedents. Implication-only version of syl2an 597. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2241 ax13ALT 2424 r19.30 3120 intss2 5059 vtoclr 5685 funopg 6522 abnex 7673 xpider 8652 undifixp 8797 onsdominel 8995 fodomr 8997 wemaplem2 9408 rankuni2b 9714 infxpenlem 9874 dfac8b 9892 ac10ct 9895 alephordi 9935 infdif 10070 cfflb 10120 alephval2 10433 tskxpss 10633 tskcard 10642 ingru 10676 grur1 10681 grothac 10691 suplem1pr 10913 mulgt0sr 10966 ixxssixx 13198 difelfzle 13474 swrdnd0 14468 climrlim2 15355 qshash 15638 gcdcllem3 16307 vdwlem13 16791 ocvsscon 20985 opsrtoslem2 21368 txcnp 22876 t0kq 23074 filconn 23139 filuni 23141 alexsubALTlem3 23305 rectbntr0 24100 iscau4 24548 cfilres 24565 lmcau 24582 bcthlem2 24594 subfacp1lem6 33444 cvmsdisj 33529 meran1 34737 bj-bi3ant 34908 bj-cbv3ta 35105 bj-2upleq 35337 bj-ismooredr2 35435 bj-snmoore 35438 bj-isclm 35616 relowlssretop 35688 poimirlem30 35963 poimirlem31 35964 caushft 36075 partimeq 37127 ax13fromc9 37224 harinf 41170 ntrk0kbimka 42022 onfrALTlem3 42537 onfrALTlem2 42539 e222 42629 e111 42667 e333 42726 bitr3VD 42842 disjinfi 43110 prpair 45371 onsetrec 46831 aacllem 46923 |
Copyright terms: Public domain | W3C validator |