![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version |
Description: Replace two antecedents. Implication-only version of syl2an 595. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2250 ax13ALT 2433 r19.30 3126 intss2 5131 vtoclr 5763 funopg 6612 feldmfvelcdm 7120 abnex 7792 xpider 8846 undifixp 8992 onsdominel 9192 fodomr 9194 fodomfir 9396 wemaplem2 9616 rankuni2b 9922 infxpenlem 10082 dfac8b 10100 ac10ct 10103 alephordi 10143 infdif 10277 cfflb 10328 alephval2 10641 tskxpss 10841 tskcard 10850 ingru 10884 grur1 10889 grothac 10899 suplem1pr 11121 mulgt0sr 11174 ixxssixx 13421 difelfzle 13698 swrdnd0 14705 climrlim2 15593 qshash 15875 gcdcllem3 16547 vdwlem13 17040 ocvsscon 21716 opsrtoslem2 22103 txcnp 23649 t0kq 23847 filconn 23912 filuni 23914 alexsubALTlem3 24078 rectbntr0 24873 iscau4 25332 cfilres 25349 lmcau 25366 bcthlem2 25378 subfacp1lem6 35153 cvmsdisj 35238 meran1 36377 bj-bi3ant 36555 bj-cbv3ta 36752 bj-2upleq 36978 bj-ismooredr2 37076 bj-snmoore 37079 bj-isclm 37257 relowlssretop 37329 poimirlem30 37610 poimirlem31 37611 caushft 37721 partimeq 38765 ax13fromc9 38862 harinf 42991 ntrk0kbimka 44001 onfrALTlem3 44515 onfrALTlem2 44517 e222 44607 e111 44645 e333 44704 bitr3VD 44820 disjinfi 45099 prpair 47375 onsetrec 48800 aacllem 48895 |
Copyright terms: Public domain | W3C validator |