| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version | ||
| Description: Replace two antecedents. Implication-only version of syl2an 596. (Contributed by Wolf Lammen, 14-May-2013.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2250 ax13ALT 2423 r19.30 3100 intss2 5072 vtoclr 5701 funopg 6550 feldmfvelcdm 7058 abnex 7733 xpider 8761 undifixp 8907 onsdominel 9090 fodomr 9092 fodomfir 9279 wemaplem2 9500 rankuni2b 9806 infxpenlem 9966 dfac8b 9984 ac10ct 9987 alephordi 10027 infdif 10161 cfflb 10212 alephval2 10525 tskxpss 10725 tskcard 10734 ingru 10768 grur1 10773 grothac 10783 suplem1pr 11005 mulgt0sr 11058 ixxssixx 13320 difelfzle 13602 swrdnd0 14622 climrlim2 15513 qshash 15793 gcdcllem3 16471 vdwlem13 16964 ocvsscon 21584 opsrtoslem2 21963 txcnp 23507 t0kq 23705 filconn 23770 filuni 23772 alexsubALTlem3 23936 rectbntr0 24721 iscau4 25179 cfilres 25196 lmcau 25213 bcthlem2 25225 onvf1odlem2 35091 subfacp1lem6 35172 cvmsdisj 35257 meran1 36399 bj-bi3ant 36577 bj-cbv3ta 36774 bj-2upleq 37000 bj-ismooredr2 37098 bj-snmoore 37101 bj-isclm 37279 relowlssretop 37351 poimirlem30 37644 poimirlem31 37645 caushft 37755 partimeq 38801 ax13fromc9 38899 harinf 43023 ntrk0kbimka 44028 onfrALTlem3 44534 onfrALTlem2 44536 e222 44626 e111 44664 e333 44722 bitr3VD 44838 disjinfi 45186 prpair 47502 onsetrec 49697 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |