| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2im | Structured version Visualization version GIF version | ||
| Description: Replace two antecedents. Implication-only version of syl2an 596. (Contributed by Wolf Lammen, 14-May-2013.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2im | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl5 34 | . 2 ⊢ (𝜓 → (𝜒 → 𝜏)) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl2imc 41 sylc 65 sbequ2 2252 ax13ALT 2425 r19.30 3099 intss2 5058 vtoclr 5682 funopg 6521 feldmfvelcdm 7025 abnex 7696 xpider 8718 undifixp 8864 onsdominel 9045 fodomr 9047 fodomfir 9218 wemaplem2 9439 rankuni2b 9752 infxpenlem 9910 dfac8b 9928 ac10ct 9931 alephordi 9971 infdif 10105 cfflb 10156 alephval2 10469 tskxpss 10669 tskcard 10678 ingru 10712 grur1 10717 grothac 10727 suplem1pr 10949 mulgt0sr 11002 ixxssixx 13265 difelfzle 13547 swrdnd0 14571 climrlim2 15460 qshash 15740 gcdcllem3 16418 vdwlem13 16911 ocvsscon 21618 opsrtoslem2 21997 txcnp 23541 t0kq 23739 filconn 23804 filuni 23806 alexsubALTlem3 23970 rectbntr0 24754 iscau4 25212 cfilres 25229 lmcau 25246 bcthlem2 25258 onvf1odlem2 35155 subfacp1lem6 35236 cvmsdisj 35321 meran1 36462 bj-bi3ant 36640 bj-cbv3ta 36837 bj-2upleq 37063 bj-ismooredr2 37161 bj-snmoore 37164 bj-isclm 37342 relowlssretop 37414 poimirlem30 37696 poimirlem31 37697 caushft 37807 partimeq 38913 ax13fromc9 39011 harinf 43132 ntrk0kbimka 44137 onfrALTlem3 44642 onfrALTlem2 44644 e222 44734 e111 44772 e333 44830 bitr3VD 44946 disjinfi 45294 prpair 47606 onsetrec 49814 aacllem 49907 |
| Copyright terms: Public domain | W3C validator |