Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-biexal2 Structured version   Visualization version   GIF version

Theorem bj-biexal2 34888
Description: When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.)
Assertion
Ref Expression
bj-biexal2 (∀𝑥(∃𝑥𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem bj-biexal2
StepHypRef Expression
1 nfe1 2147 . 2 𝑥𝑥𝜑
2119.21 2200 1 (∀𝑥(∃𝑥𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  bj-biexal3  34889
  Copyright terms: Public domain W3C validator