Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-biexal1 Structured version   Visualization version   GIF version

Theorem bj-biexal1 36215
Description: A general FOL biconditional that generalizes 19.9ht 2308 among others. For this and the following theorems, see also 19.35 1872, 19.21 2195, 19.23 2199. When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.)
Assertion
Ref Expression
bj-biexal1 (∀𝑥(𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem bj-biexal1
StepHypRef Expression
1 nfa1 2140 . 2 𝑥𝑥𝜓
2119.23 2199 1 (∀𝑥(𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-or 846  df-ex 1774  df-nf 1778
This theorem is referenced by:  bj-biexal3  36217
  Copyright terms: Public domain W3C validator