Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-biexal1 Structured version   Visualization version   GIF version

Theorem bj-biexal1 34434
Description: A general FOL biconditional that generalizes 19.9ht 2329 among others. For this and the following theorems, see also 19.35 1879, 19.21 2206, 19.23 2210. When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.)
Assertion
Ref Expression
bj-biexal1 (∀𝑥(𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem bj-biexal1
StepHypRef Expression
1 nfa1 2153 . 2 𝑥𝑥𝜓
2119.23 2210 1 (∀𝑥(𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-10 2143  ax-12 2176
This theorem depends on definitions:  df-bi 210  df-or 846  df-ex 1783  df-nf 1787
This theorem is referenced by:  bj-biexal3  34436
  Copyright terms: Public domain W3C validator