Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 2139 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
2 | 1 | nf5i 2142 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-10 2137 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfa1 2148 nfnf1 2151 nf6 2280 exdistrf 2447 nfeu1ALT 2589 euor2 2615 2moexv 2629 moexexvw 2630 2moswapv 2631 2euexv 2633 eupicka 2636 mopick2 2639 moexex 2640 2moex 2642 2euex 2643 2moswap 2646 2mo 2650 2eu7 2659 2eu8 2660 nfre1 3239 ceqsexg 3583 morex 3654 intab 4909 nfopab1 5144 nfopab2 5145 axrep1 5210 axrep2 5212 axrep3 5213 axrep4 5214 eusv2nf 5318 copsexgw 5404 copsexg 5405 copsex2t 5406 copsex2gOLD 5408 mosubopt 5424 dfid3 5492 dmcoss 5880 imadif 6518 oprabidw 7306 nfoprab1 7336 nfoprab2 7337 nfoprab3 7338 fsplitOLD 7958 zfcndrep 10370 zfcndpow 10372 zfcndreg 10373 zfcndinf 10374 reclem2pr 10804 ex-natded9.26 28783 brabgaf 30948 bnj607 32896 bnj849 32905 bnj1398 33014 bnj1449 33028 finminlem 34507 exisym1 34613 bj-alexbiex 34881 bj-exexbiex 34882 bj-biexal2 34888 bj-biexex 34891 bj-sbf3 35022 copsex2d 35310 sbexi 36271 ac6s6 36330 e2ebind 42183 e2ebindVD 42532 e2ebindALT 42549 stoweidlem57 43598 ovncvrrp 44102 ich2ex 44920 ichreuopeq 44925 reuopreuprim 44978 |
Copyright terms: Public domain | W3C validator |