| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 2144 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | nf5i 2147 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfa1 2152 nfnf1 2155 sbalex 2243 nf6 2283 exdistrf 2445 nfeu1ALT 2582 euor2 2606 2moexv 2620 moexexvw 2621 2moswapv 2622 2euexv 2624 eupicka 2627 mopick2 2630 moexex 2631 2moex 2633 2euex 2634 2moswap 2637 2mo 2641 2eu7 2651 2eu8 2652 nfre1 3260 ceqsexg 3616 morex 3687 intab 4938 nfopab1 5172 nfopab2 5173 axrep1 5230 axrep2 5232 axrep3 5233 axrep4OLD 5236 eusv2nf 5345 copsexgw 5445 copsexg 5446 copsex2t 5447 mosubopt 5465 dfid3 5529 dmcoss 5927 imadif 6584 oprabidw 7400 nfoprab1 7430 nfoprab2 7431 nfoprab3 7432 zfcndrep 10543 zfcndpow 10545 zfcndreg 10546 zfcndinf 10547 reclem2pr 10977 ex-natded9.26 30398 brabgaf 32586 bnj607 34899 bnj849 34908 bnj1398 35017 bnj1449 35031 finminlem 36299 exisym1 36405 bj-alexbiex 36680 bj-exexbiex 36681 bj-biexal2 36687 bj-biexex 36690 bj-sbf3 36820 copsex2d 37120 sbexi 38100 ac6s6 38159 e2ebind 44546 e2ebindVD 44894 e2ebindALT 44911 stoweidlem57 46048 ovncvrrp 46555 ich2ex 47462 ichreuopeq 47467 reuopreuprim 47520 pgind 49699 |
| Copyright terms: Public domain | W3C validator |