| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 2143 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | nf5i 2146 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2141 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfa1 2151 nfnf1 2154 sbalex 2242 nf6 2283 exdistrf 2451 nfeu1ALT 2588 euor2 2612 2moexv 2626 moexexvw 2627 2moswapv 2628 2euexv 2630 eupicka 2633 mopick2 2636 moexex 2637 2moex 2639 2euex 2640 2moswap 2643 2mo 2647 2eu7 2657 2eu8 2658 nfre1 3267 ceqsexg 3632 morex 3702 intab 4954 nfopab1 5189 nfopab2 5190 axrep1 5250 axrep2 5252 axrep3 5253 axrep4OLD 5256 eusv2nf 5365 copsexgw 5465 copsexg 5466 copsex2t 5467 mosubopt 5485 dfid3 5551 dmcoss 5954 imadif 6619 oprabidw 7434 nfoprab1 7466 nfoprab2 7467 nfoprab3 7468 zfcndrep 10626 zfcndpow 10628 zfcndreg 10629 zfcndinf 10630 reclem2pr 11060 ex-natded9.26 30346 brabgaf 32534 bnj607 34893 bnj849 34902 bnj1398 35011 bnj1449 35025 finminlem 36282 exisym1 36388 bj-alexbiex 36663 bj-exexbiex 36664 bj-biexal2 36670 bj-biexex 36673 bj-sbf3 36803 copsex2d 37103 sbexi 38083 ac6s6 38142 e2ebind 44536 e2ebindVD 44884 e2ebindALT 44901 stoweidlem57 46034 ovncvrrp 46541 ich2ex 47430 ichreuopeq 47435 reuopreuprim 47488 pgind 49529 |
| Copyright terms: Public domain | W3C validator |