Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 2141 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
2 | 1 | nf5i 2144 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-10 2139 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfa1 2150 nfnf1 2153 nf6 2283 exdistrf 2447 nfeu1ALT 2589 euor2 2615 2moexv 2629 moexexvw 2630 2moswapv 2631 2euexv 2633 eupicka 2636 mopick2 2639 moexex 2640 2moex 2642 2euex 2643 2moswap 2646 2mo 2650 2eu7 2659 2eu8 2660 nfre1 3234 ceqsexg 3575 morex 3649 intab 4906 nfopab1 5140 nfopab2 5141 axrep1 5206 axrep2 5208 axrep3 5209 axrep4 5210 eusv2nf 5313 copsexgw 5398 copsexg 5399 copsex2t 5400 copsex2gOLD 5402 mosubopt 5418 dfid3 5483 dmcoss 5869 imadif 6502 oprabidw 7286 nfoprab1 7314 nfoprab2 7315 nfoprab3 7316 fsplitOLD 7929 zfcndrep 10301 zfcndpow 10303 zfcndreg 10304 zfcndinf 10305 reclem2pr 10735 ex-natded9.26 28684 brabgaf 30849 bnj607 32796 bnj849 32805 bnj1398 32914 bnj1449 32928 finminlem 34434 exisym1 34540 bj-alexbiex 34808 bj-exexbiex 34809 bj-biexal2 34815 bj-biexex 34818 bj-sbf3 34949 copsex2d 35237 sbexi 36198 ac6s6 36257 e2ebind 42072 e2ebindVD 42421 e2ebindALT 42438 stoweidlem57 43488 ovncvrrp 43992 ich2ex 44808 ichreuopeq 44813 reuopreuprim 44866 |
Copyright terms: Public domain | W3C validator |