| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 2144 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | nf5i 2147 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfa1 2152 nfnf1 2155 sbalex 2243 nf6 2283 exdistrf 2445 nfeu1ALT 2582 euor2 2606 2moexv 2620 moexexvw 2621 2moswapv 2622 2euexv 2624 eupicka 2627 mopick2 2630 moexex 2631 2moex 2633 2euex 2634 2moswap 2637 2mo 2641 2eu7 2651 2eu8 2652 nfre1 3260 ceqsexg 3616 morex 3687 intab 4938 nfopab1 5172 nfopab2 5173 axrep1 5230 axrep2 5232 axrep3 5233 axrep4OLD 5236 eusv2nf 5345 copsexgw 5445 copsexg 5446 copsex2t 5447 mosubopt 5465 dfid3 5529 dmcoss 5927 imadif 6584 oprabidw 7400 nfoprab1 7430 nfoprab2 7431 nfoprab3 7432 zfcndrep 10543 zfcndpow 10545 zfcndreg 10546 zfcndinf 10547 reclem2pr 10977 ex-natded9.26 30321 brabgaf 32509 bnj607 34879 bnj849 34888 bnj1398 34997 bnj1449 35011 finminlem 36279 exisym1 36385 bj-alexbiex 36660 bj-exexbiex 36661 bj-biexal2 36667 bj-biexex 36670 bj-sbf3 36800 copsex2d 37100 sbexi 38080 ac6s6 38139 e2ebind 44526 e2ebindVD 44874 e2ebindALT 44891 stoweidlem57 46028 ovncvrrp 46535 ich2ex 47442 ichreuopeq 47447 reuopreuprim 47500 pgind 49679 |
| Copyright terms: Public domain | W3C validator |