| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 2144 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | nf5i 2147 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfa1 2152 nfnf1 2155 sbalex 2243 nf6 2283 exdistrf 2446 nfeu1ALT 2583 euor2 2607 2moexv 2621 moexexvw 2622 2moswapv 2623 2euexv 2625 eupicka 2628 mopick2 2631 moexex 2632 2moex 2634 2euex 2635 2moswap 2638 2mo 2642 2eu7 2652 2eu8 2653 nfre1 3263 ceqsexg 3622 morex 3693 intab 4945 nfopab1 5180 nfopab2 5181 axrep1 5238 axrep2 5240 axrep3 5241 axrep4OLD 5244 eusv2nf 5353 copsexgw 5453 copsexg 5454 copsex2t 5455 mosubopt 5473 dfid3 5539 dmcoss 5941 imadif 6603 oprabidw 7421 nfoprab1 7453 nfoprab2 7454 nfoprab3 7455 zfcndrep 10574 zfcndpow 10576 zfcndreg 10577 zfcndinf 10578 reclem2pr 11008 ex-natded9.26 30355 brabgaf 32543 bnj607 34913 bnj849 34922 bnj1398 35031 bnj1449 35045 finminlem 36313 exisym1 36419 bj-alexbiex 36694 bj-exexbiex 36695 bj-biexal2 36701 bj-biexex 36704 bj-sbf3 36834 copsex2d 37134 sbexi 38114 ac6s6 38173 e2ebind 44560 e2ebindVD 44908 e2ebindALT 44925 stoweidlem57 46062 ovncvrrp 46569 ich2ex 47473 ichreuopeq 47478 reuopreuprim 47531 pgind 49710 |
| Copyright terms: Public domain | W3C validator |