| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 2144 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | nf5i 2147 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfa1 2152 nfnf1 2155 sbalex 2243 nf6 2283 exdistrf 2445 nfeu1ALT 2582 euor2 2606 2moexv 2620 moexexvw 2621 2moswapv 2622 2euexv 2624 eupicka 2627 mopick2 2630 moexex 2631 2moex 2633 2euex 2634 2moswap 2637 2mo 2641 2eu7 2651 2eu8 2652 nfre1 3254 ceqsexg 3608 morex 3679 intab 4928 nfopab1 5162 nfopab2 5163 axrep1 5219 axrep2 5221 axrep3 5222 axrep4OLD 5225 eusv2nf 5334 copsexgw 5433 copsexg 5434 copsex2t 5435 mosubopt 5453 dfid3 5517 dmcossOLD 5917 imadif 6566 oprabidw 7380 nfoprab1 7410 nfoprab2 7411 nfoprab3 7412 zfcndrep 10508 zfcndpow 10510 zfcndreg 10511 zfcndinf 10512 reclem2pr 10942 ex-natded9.26 30363 brabgaf 32553 bnj607 34883 bnj849 34892 bnj1398 35001 bnj1449 35015 finminlem 36292 exisym1 36398 bj-alexbiex 36673 bj-exexbiex 36674 bj-biexal2 36680 bj-biexex 36683 bj-sbf3 36813 copsex2d 37113 sbexi 38093 ac6s6 38152 e2ebind 44537 e2ebindVD 44885 e2ebindALT 44902 stoweidlem57 46038 ovncvrrp 46545 ich2ex 47452 ichreuopeq 47457 reuopreuprim 47510 pgind 49702 |
| Copyright terms: Public domain | W3C validator |