| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 2142 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | nf5i 2145 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1778 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-10 2140 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: nfa1 2150 nfnf1 2153 sbalex 2241 nf6 2282 exdistrf 2450 nfeu1ALT 2587 euor2 2611 2moexv 2625 moexexvw 2626 2moswapv 2627 2euexv 2629 eupicka 2632 mopick2 2635 moexex 2636 2moex 2638 2euex 2639 2moswap 2642 2mo 2646 2eu7 2656 2eu8 2657 nfre1 3265 ceqsexg 3630 morex 3700 intab 4951 nfopab1 5186 nfopab2 5187 axrep1 5247 axrep2 5249 axrep3 5250 axrep4OLD 5253 eusv2nf 5362 copsexgw 5462 copsexg 5463 copsex2t 5464 mosubopt 5482 dfid3 5548 dmcoss 5951 imadif 6616 oprabidw 7430 nfoprab1 7462 nfoprab2 7463 nfoprab3 7464 zfcndrep 10620 zfcndpow 10622 zfcndreg 10623 zfcndinf 10624 reclem2pr 11054 ex-natded9.26 30332 brabgaf 32521 bnj607 34868 bnj849 34877 bnj1398 34986 bnj1449 35000 finminlem 36257 exisym1 36363 bj-alexbiex 36638 bj-exexbiex 36639 bj-biexal2 36645 bj-biexex 36648 bj-sbf3 36778 copsex2d 37078 sbexi 38058 ac6s6 38117 e2ebind 44514 e2ebindVD 44863 e2ebindALT 44880 stoweidlem57 46016 ovncvrrp 46523 ich2ex 47400 ichreuopeq 47405 reuopreuprim 47458 pgind 49301 |
| Copyright terms: Public domain | W3C validator |