![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 2143 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
2 | 1 | nf5i 2146 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-10 2141 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfa1 2152 nfnf1 2155 sbalex 2243 nf6 2287 exdistrf 2455 nfeu1ALT 2592 euor2 2616 2moexv 2630 moexexvw 2631 2moswapv 2632 2euexv 2634 eupicka 2637 mopick2 2640 moexex 2641 2moex 2643 2euex 2644 2moswap 2647 2mo 2651 2eu7 2661 2eu8 2662 nfre1 3291 ceqsexg 3666 morex 3741 intab 5002 nfopab1 5236 nfopab2 5237 axrep1 5304 axrep2 5306 axrep3 5307 axrep4 5308 eusv2nf 5413 copsexgw 5510 copsexg 5511 copsex2t 5512 mosubopt 5529 dfid3 5596 dmcoss 5997 imadif 6662 oprabidw 7479 nfoprab1 7511 nfoprab2 7512 nfoprab3 7513 zfcndrep 10683 zfcndpow 10685 zfcndreg 10686 zfcndinf 10687 reclem2pr 11117 ex-natded9.26 30451 brabgaf 32630 bnj607 34892 bnj849 34901 bnj1398 35010 bnj1449 35024 finminlem 36284 exisym1 36390 bj-alexbiex 36665 bj-exexbiex 36666 bj-biexal2 36672 bj-biexex 36675 bj-sbf3 36805 copsex2d 37105 sbexi 38073 ac6s6 38132 e2ebind 44534 e2ebindVD 44883 e2ebindALT 44900 stoweidlem57 45978 ovncvrrp 46485 ich2ex 47342 ichreuopeq 47347 reuopreuprim 47400 pgind 48809 |
Copyright terms: Public domain | W3C validator |