| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 2146 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | nf5i 2149 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2144 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfa1 2154 nfnf1 2157 sbalex 2245 nf6 2285 exdistrf 2447 nfeu1ALT 2584 euor2 2608 2moexv 2622 moexexvw 2623 2moswapv 2624 2euexv 2626 eupicka 2629 mopick2 2632 moexex 2633 2moex 2635 2euex 2636 2moswap 2639 2mo 2643 2eu7 2653 2eu8 2654 nfre1 3257 ceqsexg 3603 morex 3673 intab 4926 nfopab1 5159 nfopab2 5160 axrep1 5216 axrep2 5218 axrep3 5219 axrep4OLD 5222 eusv2nf 5331 copsexgw 5428 copsexg 5429 copsex2t 5430 mosubopt 5448 dfid3 5512 dmcossOLD 5914 imadif 6565 oprabidw 7377 nfoprab1 7407 nfoprab2 7408 nfoprab3 7409 zfcndrep 10505 zfcndpow 10507 zfcndreg 10508 zfcndinf 10509 reclem2pr 10939 ex-natded9.26 30399 brabgaf 32589 bnj607 34928 bnj849 34937 bnj1398 35046 bnj1449 35060 finminlem 36360 exisym1 36466 bj-alexbiex 36741 bj-exexbiex 36742 bj-biexal2 36748 bj-biexex 36751 bj-sbf3 36881 copsex2d 37181 sbexi 38161 ac6s6 38220 e2ebind 44604 e2ebindVD 44952 e2ebindALT 44969 stoweidlem57 46103 ovncvrrp 46610 ich2ex 47507 ichreuopeq 47512 reuopreuprim 47565 pgind 49757 |
| Copyright terms: Public domain | W3C validator |