| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 2144 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | nf5i 2147 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfa1 2152 nfnf1 2155 sbalex 2243 nf6 2283 exdistrf 2445 nfeu1ALT 2582 euor2 2606 2moexv 2620 moexexvw 2621 2moswapv 2622 2euexv 2624 eupicka 2627 mopick2 2630 moexex 2631 2moex 2633 2euex 2634 2moswap 2637 2mo 2641 2eu7 2651 2eu8 2652 nfre1 3262 ceqsexg 3619 morex 3690 intab 4942 nfopab1 5177 nfopab2 5178 axrep1 5235 axrep2 5237 axrep3 5238 axrep4OLD 5241 eusv2nf 5350 copsexgw 5450 copsexg 5451 copsex2t 5452 mosubopt 5470 dfid3 5536 dmcoss 5938 imadif 6600 oprabidw 7418 nfoprab1 7450 nfoprab2 7451 nfoprab3 7452 zfcndrep 10567 zfcndpow 10569 zfcndreg 10570 zfcndinf 10571 reclem2pr 11001 ex-natded9.26 30348 brabgaf 32536 bnj607 34906 bnj849 34915 bnj1398 35024 bnj1449 35038 finminlem 36306 exisym1 36412 bj-alexbiex 36687 bj-exexbiex 36688 bj-biexal2 36694 bj-biexex 36697 bj-sbf3 36827 copsex2d 37127 sbexi 38107 ac6s6 38166 e2ebind 44553 e2ebindVD 44901 e2ebindALT 44918 stoweidlem57 46055 ovncvrrp 46562 ich2ex 47469 ichreuopeq 47474 reuopreuprim 47527 pgind 49706 |
| Copyright terms: Public domain | W3C validator |