Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfe1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 2143 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
2 | 1 | nf5i 2146 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1786 Ⅎwnf 1790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-10 2141 |
This theorem depends on definitions: df-bi 206 df-ex 1787 df-nf 1791 |
This theorem is referenced by: nfa1 2152 nfnf1 2155 nf6 2284 exdistrf 2449 nfeu1ALT 2591 euor2 2617 2moexv 2631 moexexvw 2632 2moswapv 2633 2euexv 2635 eupicka 2638 mopick2 2641 moexex 2642 2moex 2644 2euex 2645 2moswap 2648 2mo 2652 2eu7 2661 2eu8 2662 nfre1 3237 ceqsexg 3584 morex 3658 intab 4915 nfopab1 5149 nfopab2 5150 axrep1 5215 axrep2 5217 axrep3 5218 axrep4 5219 eusv2nf 5322 copsexgw 5407 copsexg 5408 copsex2t 5409 copsex2gOLD 5411 mosubopt 5427 dfid3 5492 dmcoss 5878 imadif 6515 oprabidw 7300 nfoprab1 7328 nfoprab2 7329 nfoprab3 7330 fsplitOLD 7947 zfcndrep 10369 zfcndpow 10371 zfcndreg 10372 zfcndinf 10373 reclem2pr 10803 ex-natded9.26 28777 brabgaf 30942 bnj607 32890 bnj849 32899 bnj1398 33008 bnj1449 33022 finminlem 34501 exisym1 34607 bj-alexbiex 34875 bj-exexbiex 34876 bj-biexal2 34882 bj-biexex 34885 bj-sbf3 35016 copsex2d 35304 sbexi 36265 ac6s6 36324 e2ebind 42151 e2ebindVD 42500 e2ebindALT 42517 stoweidlem57 43567 ovncvrrp 44071 ich2ex 44887 ichreuopeq 44892 reuopreuprim 44945 |
Copyright terms: Public domain | W3C validator |