| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". See 19.21v 1940 for a version requiring fewer axioms. See also 19.21h 2289. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) df-nf 1785 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| 19.21.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.21 | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 19.21t 2209 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: stdpc5 2211 19.21-2 2212 19.32 2236 nf6 2285 19.21h 2289 sbrim 2306 cbv1v 2336 19.12vv 2347 cbv1 2402 axc14 2463 r2alf 3253 19.12b 35843 bj-biexal2 36750 bj-bialal 36752 wl-dral1d 37575 mpobi123f 38212 |
| Copyright terms: Public domain | W3C validator |