Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.21 | Structured version Visualization version GIF version |
Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". See 19.21v 1942 for a version requiring fewer axioms. See also 19.21h 2284. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) df-nf 1787 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
Ref | Expression |
---|---|
19.21.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.21 | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 19.21t 2199 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: stdpc5 2201 19.21-2 2202 19.32 2226 nf6 2280 19.21h 2284 sbrim 2301 cbv1v 2333 19.12vv 2345 cbv1 2402 axc14 2463 r2alf 3147 19.12b 33777 bj-biexal2 34888 bj-bialal 34890 wl-dral1d 35690 mpobi123f 36320 |
Copyright terms: Public domain | W3C validator |