| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gen2 | Structured version Visualization version GIF version | ||
| Description: Generalization applied twice. (Contributed by NM, 30-Apr-1998.) |
| Ref | Expression |
|---|---|
| gen2.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| gen2 | ⊢ ∀𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gen2.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1796 | . 2 ⊢ ∀𝑦𝜑 |
| 3 | 2 | ax-gen 1796 | 1 ⊢ ∀𝑥∀𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1539 |
| This theorem was proved from axioms: ax-gen 1796 |
| This theorem is referenced by: axextmo 2709 moeq 3662 csbie2 3885 mosneq 4795 eusv1 5333 moop2 5447 mosubop 5456 eqrelriv 5735 opabid2 5774 xpidtr 6075 funoprab 7476 fnoprab 7479 elovmpo 7599 tfrlem7 8310 hartogs 9439 card2on 9449 epinid0 9498 cnvepnep 9507 ssttrcl 9614 tskwe 9852 ondomon 10463 fi1uzind 14418 brfi1indALT 14421 climeu 15466 letsr 18503 ulmdm 26332 ajmoi 30842 helch 31227 hsn0elch 31232 chintcli 31315 adjmo 31816 nlelchi 32045 hmopidmchi 32135 bnj978 34984 bnj1052 35010 bnj1030 35022 funen1cnv 35123 satfv0 35425 satfv0fun 35438 fnsingle 35984 funimage 35993 funpartfun 36010 imagesset 36020 funtransport 36098 funray 36207 funline 36209 filnetlem3 36447 bj-cbvalimi 36714 bj-cbveximi 36715 ax11-pm 36899 ax11-pm2 36903 bj-snsetex 37030 wl-equsal1i 37611 mbfresfi 37729 riscer 38051 vvdifopab 38320 opabf 38423 mopre 38507 cnvcosseq 38562 antisymressn 38569 trressn 38570 symrelcoss3 38590 cotrintab 43734 pm11.11 44494 fun2dmnopgexmpl 47411 ichv 47576 ichf 47577 ichid 47578 icht 47579 ichcircshi 47581 icheq 47589 pg4cyclnex 48254 mof0ALT 48967 f1omoOLD 49021 |
| Copyright terms: Public domain | W3C validator |