![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gen2 | Structured version Visualization version GIF version |
Description: Generalization applied twice. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
gen2.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
gen2 | ⊢ ∀𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gen2.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1793 | . 2 ⊢ ∀𝑦𝜑 |
3 | 2 | ax-gen 1793 | 1 ⊢ ∀𝑥∀𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1535 |
This theorem was proved from axioms: ax-gen 1793 |
This theorem is referenced by: axextmo 2715 moeq 3729 csbie2 3963 mosneq 4867 eusv1 5409 moop2 5521 mosubop 5530 eqrelriv 5813 opabid2 5852 xpidtr 6154 fvmptopabOLD 7505 funoprab 7572 fnoprab 7575 elovmpo 7695 wfrfunOLD 8375 tfrlem7 8439 hartogs 9613 card2on 9623 epinid0 9669 cnvepnep 9677 ssttrcl 9784 tskwe 10019 ondomon 10632 fi1uzind 14556 brfi1indALT 14559 climeu 15601 letsr 18663 ulmdm 26454 wlkResOLD 29686 ajmoi 30890 helch 31275 hsn0elch 31280 chintcli 31363 adjmo 31864 nlelchi 32093 hmopidmchi 32183 bnj978 34925 bnj1052 34951 bnj1030 34963 funen1cnv 35064 satfv0 35326 satfv0fun 35339 fnsingle 35883 funimage 35892 funpartfun 35907 imagesset 35917 funtransport 35995 funray 36104 funline 36106 filnetlem3 36346 bj-cbvalimi 36613 bj-cbveximi 36614 ax11-pm 36798 ax11-pm2 36802 bj-snsetex 36929 wl-equsal1i 37498 mbfresfi 37626 riscer 37948 vvdifopab 38216 opabf 38324 cnvcosseq 38393 antisymressn 38400 trressn 38401 symrelcoss3 38421 cotrintab 43576 pm11.11 44343 fun2dmnopgexmpl 47199 ichv 47323 ichf 47324 ichid 47325 icht 47326 ichcircshi 47328 icheq 47336 mof0ALT 48553 f1omo 48574 |
Copyright terms: Public domain | W3C validator |