Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gen2 | Structured version Visualization version GIF version |
Description: Generalization applied twice. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
gen2.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
gen2 | ⊢ ∀𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gen2.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑦𝜑 |
3 | 2 | ax-gen 1795 | 1 ⊢ ∀𝑥∀𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1537 |
This theorem was proved from axioms: ax-gen 1795 |
This theorem is referenced by: axextmo 2711 moeq 3647 csbie2 3879 mosneq 4779 eusv1 5323 moop2 5429 mosubop 5438 eqrelriv 5711 opabid2 5750 xpidtr 6042 fvmptopabOLD 7362 funoprab 7428 mpofunOLD 7431 fnoprab 7432 elovmpo 7546 wfrfunOLD 8181 tfrlem7 8245 hartogs 9351 card2on 9361 epinid0 9407 cnvepnep 9414 ssttrcl 9521 tskwe 9756 ondomon 10369 fi1uzind 14260 brfi1indALT 14263 climeu 15313 letsr 18360 ulmdm 25601 wlkResOLD 28066 ajmoi 29269 helch 29654 hsn0elch 29659 chintcli 29742 adjmo 30243 nlelchi 30472 hmopidmchi 30562 bnj978 32978 bnj1052 33004 bnj1030 33016 funen1cnv 33109 satfv0 33369 satfv0fun 33382 fnsingle 34270 funimage 34279 funpartfun 34294 imagesset 34304 funtransport 34382 funray 34491 funline 34493 filnetlem3 34618 bj-cbvalimi 34877 bj-cbveximi 34878 ax11-pm 35063 ax11-pm2 35067 bj-snsetex 35201 wl-equsal1i 35750 mbfresfi 35871 riscer 36194 vvdifopab 36470 opabf 36581 cnvcosseq 36651 antisymressn 36658 trressn 36659 symrelcoss3 36679 cotrintab 41435 pm11.11 42205 fun2dmnopgexmpl 45020 ichv 45145 ichf 45146 ichid 45147 icht 45148 ichcircshi 45150 icheq 45158 mof0ALT 46411 f1omo 46432 |
Copyright terms: Public domain | W3C validator |