| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gen2 | Structured version Visualization version GIF version | ||
| Description: Generalization applied twice. (Contributed by NM, 30-Apr-1998.) |
| Ref | Expression |
|---|---|
| gen2.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| gen2 | ⊢ ∀𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gen2.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑦𝜑 |
| 3 | 2 | ax-gen 1795 | 1 ⊢ ∀𝑥∀𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 |
| This theorem was proved from axioms: ax-gen 1795 |
| This theorem is referenced by: axextmo 2705 moeq 3678 csbie2 3901 mosneq 4806 eusv1 5346 moop2 5462 mosubop 5471 eqrelriv 5752 opabid2 5791 xpidtr 6095 fvmptopabOLD 7444 funoprab 7511 fnoprab 7514 elovmpo 7634 tfrlem7 8351 hartogs 9497 card2on 9507 epinid0 9553 cnvepnep 9561 ssttrcl 9668 tskwe 9903 ondomon 10516 fi1uzind 14472 brfi1indALT 14475 climeu 15521 letsr 18552 ulmdm 26302 wlkResOLD 29578 ajmoi 30787 helch 31172 hsn0elch 31177 chintcli 31260 adjmo 31761 nlelchi 31990 hmopidmchi 32080 bnj978 34939 bnj1052 34965 bnj1030 34977 funen1cnv 35078 satfv0 35345 satfv0fun 35358 fnsingle 35907 funimage 35916 funpartfun 35931 imagesset 35941 funtransport 36019 funray 36128 funline 36130 filnetlem3 36368 bj-cbvalimi 36635 bj-cbveximi 36636 ax11-pm 36820 ax11-pm2 36824 bj-snsetex 36951 wl-equsal1i 37532 mbfresfi 37660 riscer 37982 vvdifopab 38249 opabf 38350 cnvcosseq 38428 antisymressn 38435 trressn 38436 symrelcoss3 38456 cotrintab 43603 pm11.11 44363 fun2dmnopgexmpl 47282 ichv 47447 ichf 47448 ichid 47449 icht 47450 ichcircshi 47452 icheq 47460 pg4cyclnex 48114 mof0ALT 48825 f1omoOLD 48879 |
| Copyright terms: Public domain | W3C validator |