![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gen2 | Structured version Visualization version GIF version |
Description: Generalization applied twice. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
gen2.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
gen2 | ⊢ ∀𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gen2.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1792 | . 2 ⊢ ∀𝑦𝜑 |
3 | 2 | ax-gen 1792 | 1 ⊢ ∀𝑥∀𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1535 |
This theorem was proved from axioms: ax-gen 1792 |
This theorem is referenced by: axextmo 2710 moeq 3716 csbie2 3950 mosneq 4847 eusv1 5397 moop2 5512 mosubop 5521 eqrelriv 5802 opabid2 5841 xpidtr 6145 fvmptopabOLD 7488 funoprab 7555 fnoprab 7558 elovmpo 7678 wfrfunOLD 8358 tfrlem7 8422 hartogs 9582 card2on 9592 epinid0 9638 cnvepnep 9646 ssttrcl 9753 tskwe 9988 ondomon 10601 fi1uzind 14543 brfi1indALT 14546 climeu 15588 letsr 18651 ulmdm 26451 wlkResOLD 29683 ajmoi 30887 helch 31272 hsn0elch 31277 chintcli 31360 adjmo 31861 nlelchi 32090 hmopidmchi 32180 bnj978 34942 bnj1052 34968 bnj1030 34980 funen1cnv 35081 satfv0 35343 satfv0fun 35356 fnsingle 35901 funimage 35910 funpartfun 35925 imagesset 35935 funtransport 36013 funray 36122 funline 36124 filnetlem3 36363 bj-cbvalimi 36630 bj-cbveximi 36631 ax11-pm 36815 ax11-pm2 36819 bj-snsetex 36946 wl-equsal1i 37525 mbfresfi 37653 riscer 37975 vvdifopab 38242 opabf 38350 cnvcosseq 38419 antisymressn 38426 trressn 38427 symrelcoss3 38447 cotrintab 43604 pm11.11 44370 fun2dmnopgexmpl 47234 ichv 47374 ichf 47375 ichid 47376 icht 47377 ichcircshi 47379 icheq 47387 mof0ALT 48670 f1omo 48691 |
Copyright terms: Public domain | W3C validator |