Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cleljusti Structured version   Visualization version   GIF version

Theorem bj-cleljusti 34788
Description: One direction of cleljust 2117, requiring only ax-1 6-- ax-5 1914 and ax8v1 2112. (Contributed by BJ, 31-Dec-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-cleljusti (∃𝑧(𝑧 = 𝑥𝑧𝑦) → 𝑥𝑦)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem bj-cleljusti
StepHypRef Expression
1 ax8v1 2112 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
21imp 406 . 2 ((𝑧 = 𝑥𝑧𝑦) → 𝑥𝑦)
32exlimiv 1934 1 (∃𝑧(𝑧 = 𝑥𝑧𝑦) → 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-8 2110
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator