Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elequ12 Structured version   Visualization version   GIF version

Theorem bj-elequ12 34829
Description: An identity law for the non-logical predicate, which combines elequ1 2114 and elequ2 2122. For the analogous theorems for class terms, see eleq1 2824, eleq2 2825 and eleq12 2826. TODO: move to main part. (Contributed by BJ, 29-Sep-2019.)
Assertion
Ref Expression
bj-elequ12 ((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))

Proof of Theorem bj-elequ12
StepHypRef Expression
1 elequ1 2114 . 2 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
2 elequ2 2122 . 2 (𝑧 = 𝑡 → (𝑦𝑧𝑦𝑡))
31, 2sylan9bb 509 1 ((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  bj-ru0  35100
  Copyright terms: Public domain W3C validator