MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljust Structured version   Visualization version   GIF version

Theorem cleljust 2120
Description: When the class variables in Definition df-clel 2806 are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 2112 with the class variables in wcel 2111. (Contributed by NM, 28-Jan-2004.) Revised to use equsexvw 2006 in order to remove dependencies on ax-10 2144, ax-12 2180, ax-13 2372. Note that there is no disjoint variable condition on 𝑥, 𝑦, that is, on the variables of the left-hand side, as should be the case for definitions. (Revised by BJ, 29-Dec-2020.)
Assertion
Ref Expression
cleljust (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem cleljust
StepHypRef Expression
1 elequ1 2118 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
21equsexvw 2006 . 2 (∃𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
32bicomi 224 1 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  dfclel  2807
  Copyright terms: Public domain W3C validator