MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljust Structured version   Visualization version   GIF version

Theorem cleljust 2118
Description: When the class variables in Definition df-clel 2804 are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 2110 with the class variables in wcel 2109. (Contributed by NM, 28-Jan-2004.) Revised to use equsexvw 2005 in order to remove dependencies on ax-10 2142, ax-12 2178, ax-13 2371. Note that there is no disjoint variable condition on 𝑥, 𝑦, that is, on the variables of the left-hand side, as should be the case for definitions. (Revised by BJ, 29-Dec-2020.)
Assertion
Ref Expression
cleljust (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem cleljust
StepHypRef Expression
1 elequ1 2116 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
21equsexvw 2005 . 2 (∃𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
32bicomi 224 1 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  dfclel  2805
  Copyright terms: Public domain W3C validator