| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-alcomexcom | Structured version Visualization version GIF version | ||
| Description: Commutation of two existential quantifiers on a formula is equivalent to commutation of two universal quantifiers over the same variables on the negation of that formula. Can be placed in the ax-4 1808 section, soon after 2nexaln 1829, and used to prove excom 2161. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-alcomexcom | ⊢ ((∀𝑥∀𝑦 ¬ 𝜑 → ∀𝑦∀𝑥 ¬ 𝜑) ↔ (∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con34b 316 | . 2 ⊢ ((∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑) ↔ (¬ ∃𝑥∃𝑦𝜑 → ¬ ∃𝑦∃𝑥𝜑)) | |
| 2 | 2nexaln 1829 | . . 3 ⊢ (¬ ∃𝑥∃𝑦𝜑 ↔ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 3 | 2nexaln 1829 | . . 3 ⊢ (¬ ∃𝑦∃𝑥𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 4 | 2, 3 | imbi12i 350 | . 2 ⊢ ((¬ ∃𝑥∃𝑦𝜑 → ¬ ∃𝑦∃𝑥𝜑) ↔ (∀𝑥∀𝑦 ¬ 𝜑 → ∀𝑦∀𝑥 ¬ 𝜑)) |
| 5 | 1, 4 | bitr2i 276 | 1 ⊢ ((∀𝑥∀𝑦 ¬ 𝜑 → ∀𝑦∀𝑥 ¬ 𝜑) ↔ (∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |