Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-alcomexcom Structured version   Visualization version   GIF version

Theorem bj-alcomexcom 34789
Description: Commutation of universal quantifiers implies commutation of existential quantifiers. Can be placed in the ax-4 1813 section, soon after 2nexaln 1833, and used to prove excom 2164. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-alcomexcom ((∀𝑥𝑦 ¬ 𝜑 → ∀𝑦𝑥 ¬ 𝜑) → (∃𝑦𝑥𝜑 → ∃𝑥𝑦𝜑))

Proof of Theorem bj-alcomexcom
StepHypRef Expression
1 2nexaln 1833 . . 3 (¬ ∃𝑥𝑦𝜑 ↔ ∀𝑥𝑦 ¬ 𝜑)
2 2nexaln 1833 . . 3 (¬ ∃𝑦𝑥𝜑 ↔ ∀𝑦𝑥 ¬ 𝜑)
31, 2imbi12i 350 . 2 ((¬ ∃𝑥𝑦𝜑 → ¬ ∃𝑦𝑥𝜑) ↔ (∀𝑥𝑦 ¬ 𝜑 → ∀𝑦𝑥 ¬ 𝜑))
4 con4 113 . 2 ((¬ ∃𝑥𝑦𝜑 → ¬ ∃𝑦𝑥𝜑) → (∃𝑦𝑥𝜑 → ∃𝑥𝑦𝜑))
53, 4sylbir 234 1 ((∀𝑥𝑦 ¬ 𝜑 → ∀𝑦𝑥 ¬ 𝜑) → (∃𝑦𝑥𝜑 → ∃𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator