Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-currypeirce Structured version   Visualization version   GIF version

Theorem bj-currypeirce 34664
Description: Curry's axiom curryax 890 (a non-intuitionistic positive statement sometimes called a paradox of material implication) implies Peirce's axiom peirce 201 over minimal implicational calculus and the axiomatic definition of disjunction (actually, only the elimination axiom jao 957 via its inference form jaoi 853; the introduction axioms olc 864 and orc 863 are not needed). Note that this theorem shows that actually, the standard instance of curryax 890 implies the standard instance of peirce 201, which is not the case for the converse bj-peircecurry 34665. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-currypeirce ((𝜑 ∨ (𝜑𝜓)) → (((𝜑𝜓) → 𝜑) → 𝜑))

Proof of Theorem bj-currypeirce
StepHypRef Expression
1 ax-1 6 . 2 (𝜑 → (((𝜑𝜓) → 𝜑) → 𝜑))
2 pm2.27 42 . 2 ((𝜑𝜓) → (((𝜑𝜓) → 𝜑) → 𝜑))
31, 2jaoi 853 1 ((𝜑 ∨ (𝜑𝜓)) → (((𝜑𝜓) → 𝜑) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator