Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-currypeirce Structured version   Visualization version   GIF version

Theorem bj-currypeirce 36552
Description: Curry's axiom curryax 894 (a non-intuitionistic positive statement sometimes called a paradox of material implication) implies Peirce's axiom peirce 202 over minimal implicational calculus and the axiomatic definition of disjunction (actually, only the elimination axiom jao 963 via its inference form jaoi 858; the introduction axioms olc 869 and orc 868 are not needed). Note that this theorem shows that actually, the standard instance of curryax 894 implies the standard instance of peirce 202, which is not the case for the converse bj-peircecurry 36553. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-currypeirce ((𝜑 ∨ (𝜑𝜓)) → (((𝜑𝜓) → 𝜑) → 𝜑))

Proof of Theorem bj-currypeirce
StepHypRef Expression
1 ax-1 6 . 2 (𝜑 → (((𝜑𝜓) → 𝜑) → 𝜑))
2 pm2.27 42 . 2 ((𝜑𝜓) → (((𝜑𝜓) → 𝜑) → 𝜑))
31, 2jaoi 858 1 ((𝜑 ∨ (𝜑𝜓)) → (((𝜑𝜓) → 𝜑) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator