![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-currypeirce | Structured version Visualization version GIF version |
Description: Curry's axiom (a non-intuitionistic statement sometimes called a paradox of material implication) implies Peirce's axiom peirce 194 over minimal implicational calculus and the axiomatic definition of disjunction (olc 857, orc 856, jao 946). A shorter proof from bj-orim2 33122, pm1.2 890, syl6com 37 is possible if we accept to use pm1.2 890, itself a direct consequence of jao 946. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-currypeirce | ⊢ ((𝜑 ∨ (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 857 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
2 | 1 | imim2i 16 | . . 3 ⊢ (((𝜑 → 𝜓) → 𝜑) → ((𝜑 → 𝜓) → (𝜑 ∨ 𝜑))) |
3 | jao 946 | . . 3 ⊢ ((𝜑 → (𝜑 ∨ 𝜑)) → (((𝜑 → 𝜓) → (𝜑 ∨ 𝜑)) → ((𝜑 ∨ (𝜑 → 𝜓)) → (𝜑 ∨ 𝜑)))) | |
4 | 1, 2, 3 | mpsyl 68 | . 2 ⊢ (((𝜑 → 𝜓) → 𝜑) → ((𝜑 ∨ (𝜑 → 𝜓)) → (𝜑 ∨ 𝜑))) |
5 | id 22 | . . 3 ⊢ (𝜑 → 𝜑) | |
6 | jao 946 | . . 3 ⊢ ((𝜑 → 𝜑) → ((𝜑 → 𝜑) → ((𝜑 ∨ 𝜑) → 𝜑))) | |
7 | 5, 5, 6 | mp2 9 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) |
8 | 4, 7 | syl6com 37 | 1 ⊢ ((𝜑 ∨ (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |