Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jao | Structured version Visualization version GIF version |
Description: Disjunction of antecedents. Compare Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 4-Apr-2013.) |
Ref | Expression |
---|---|
jao | ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜑 ∨ 𝜒) → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.44 956 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓)) → ((𝜑 ∨ 𝜒) → 𝜓)) | |
2 | 1 | ex 412 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜑 ∨ 𝜒) → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: 3jao 1423 en3lplem2 9301 indpi 10594 bj-orim2 34663 jaodd 40102 jaoded 42075 suctrALT2VD 42345 suctrALT2 42346 en3lplem2VD 42353 hbimpgVD 42413 ax6e2ndeqVD 42418 suctrALTcf 42431 suctrALTcfVD 42432 ax6e2ndeqALT 42440 |
Copyright terms: Public domain | W3C validator |