![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jao | Structured version Visualization version GIF version |
Description: Disjunction of antecedents. Compare Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 4-Apr-2013.) |
Ref | Expression |
---|---|
jao | ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜑 ∨ 𝜒) → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.44 958 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓)) → ((𝜑 ∨ 𝜒) → 𝜓)) | |
2 | 1 | ex 413 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜑 ∨ 𝜒) → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 |
This theorem is referenced by: 3jao 1425 en3lplem2 9604 indpi 10898 bj-orim2 35420 jaodd 41020 jaoded 43312 suctrALT2VD 43582 suctrALT2 43583 en3lplem2VD 43590 hbimpgVD 43650 ax6e2ndeqVD 43655 suctrALTcf 43668 suctrALTcfVD 43669 ax6e2ndeqALT 43677 |
Copyright terms: Public domain | W3C validator |