| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jao | Structured version Visualization version GIF version | ||
| Description: Disjunction of antecedents. Compare Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 4-Apr-2013.) |
| Ref | Expression |
|---|---|
| jao | ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜑 ∨ 𝜒) → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.44 961 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓)) → ((𝜑 ∨ 𝜒) → 𝜓)) | |
| 2 | 1 | ex 412 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜑 ∨ 𝜒) → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: 3jao 1427 en3lplem2 9584 indpi 10878 bj-orim2 36541 jaodd 42188 jaoded 44528 suctrALT2VD 44797 suctrALT2 44798 en3lplem2VD 44805 hbimpgVD 44865 ax6e2ndeqVD 44870 suctrALTcf 44883 suctrALTcfVD 44884 ax6e2ndeqALT 44892 |
| Copyright terms: Public domain | W3C validator |