|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dfbi4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| bj-dfbi4 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfbi3 1049 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓))) | |
| 2 | pm4.56 990 | . . 3 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | |
| 3 | 2 | orbi2i 912 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) | 
| 4 | 1, 3 | bitri 275 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: bj-dfbi5 36576 | 
| Copyright terms: Public domain | W3C validator |