Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version |
Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 983 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | bicomi 227 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 |
This theorem is referenced by: oran 989 nornotOLD 1530 neanior 3027 rexprg 4588 prneimg 4741 unfi 8774 ssxr 10791 isirred2 19576 aaliou3lem9 25101 mideulem2 26683 opphllem 26684 bj-dfbi4 34400 topdifinffinlem 35164 icorempo 35168 dalawlem13 37543 cdleme22b 38001 metakunt1 39739 negn0nposznnd 39909 jm2.26lem3 40418 wopprc 40447 iunconnlem2 42116 icccncfext 42993 cncfiooicc 43000 fourierdlem25 43238 fourierdlem35 43248 fourierswlem 43336 fouriersw 43337 etransclem44 43384 sge0split 43512 islininds2 45389 digexp 45517 |
Copyright terms: Public domain | W3C validator |