| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 985 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: oran 991 neanior 3024 rexprg 4677 prneimg 4834 ord1eln01 8516 ord2eln012 8517 unfi 9193 ssxr 11312 isirred2 20390 aaliou3lem9 26329 mideulem2 28679 opphllem 28680 weiunfr 36443 bj-dfbi4 36549 topdifinffinlem 37323 icorempo 37327 dalawlem13 39860 cdleme22b 40318 aks6d1c2p2 42095 metakunt1 42181 negn0nposznnd 42296 jm2.26lem3 42991 wopprc 43020 iunconnlem2 44927 icccncfext 45874 cncfiooicc 45881 fourierdlem25 46119 fourierdlem35 46129 fourierswlem 46217 fouriersw 46218 etransclem44 46265 sge0split 46396 islininds2 48374 digexp 48501 |
| Copyright terms: Public domain | W3C validator |