MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.56 Structured version   Visualization version   GIF version

Theorem pm4.56 990
Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.56 ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))

Proof of Theorem pm4.56
StepHypRef Expression
1 ioran 985 . 2 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
21bicomi 224 1 ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  oran  991  neanior  3021  rexprg  4650  prneimg  4806  ord1eln01  8411  ord2eln012  8412  unfi  9080  ssxr  11182  isirred2  20340  aaliou3lem9  26286  mideulem2  28713  opphllem  28714  weiunfr  36507  bj-dfbi4  36613  topdifinffinlem  37387  icorempo  37391  dalawlem13  39928  cdleme22b  40386  aks6d1c2p2  42158  negn0nposznnd  42321  jm2.26lem3  43040  wopprc  43069  iunconnlem2  44973  icccncfext  45931  cncfiooicc  45938  fourierdlem25  46176  fourierdlem35  46186  fourierswlem  46274  fouriersw  46275  etransclem44  46322  sge0split  46453  islininds2  48522  digexp  48645
  Copyright terms: Public domain W3C validator