![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version |
Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 1007 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | bicomi 216 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∧ wa 385 ∨ wo 874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 |
This theorem is referenced by: oran 1013 neanior 3061 prneimg 4571 ssxr 10395 isirred2 19014 aaliou3lem9 24443 mideulem2 25975 opphllem 25976 bj-dfbi4 33054 topdifinffinlem 33685 icorempt2 33689 dalawlem13 35896 cdleme22b 36354 jm2.26lem3 38341 wopprc 38370 iunconnlem2 39919 icccncfext 40832 cncfiooicc 40839 fourierdlem25 41080 fourierdlem35 41090 fourierswlem 41178 fouriersw 41179 etransclem44 41226 sge0split 41357 islininds2 43060 digexp 43188 |
Copyright terms: Public domain | W3C validator |