![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version |
Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 982 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | bicomi 223 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 |
This theorem is referenced by: oran 988 neanior 3032 rexprg 4701 prneimg 4856 ord1eln01 8516 ord2eln012 8517 unfi 9196 ssxr 11313 isirred2 20359 aaliou3lem9 26284 mideulem2 28537 opphllem 28538 bj-dfbi4 36049 topdifinffinlem 36826 icorempo 36830 dalawlem13 39356 cdleme22b 39814 aks6d1c2p2 41590 metakunt1 41657 negn0nposznnd 41856 jm2.26lem3 42422 wopprc 42451 iunconnlem2 44374 icccncfext 45275 cncfiooicc 45282 fourierdlem25 45520 fourierdlem35 45530 fourierswlem 45618 fouriersw 45619 etransclem44 45666 sge0split 45797 islininds2 47552 digexp 47680 |
Copyright terms: Public domain | W3C validator |