Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version |
Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 981 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | bicomi 223 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: oran 987 neanior 3037 rexprg 4632 prneimg 4785 ord1eln01 8326 ord2eln012 8327 unfi 8955 ssxr 11044 isirred2 19943 aaliou3lem9 25510 mideulem2 27095 opphllem 27096 bj-dfbi4 34754 topdifinffinlem 35518 icorempo 35522 dalawlem13 37897 cdleme22b 38355 metakunt1 40125 negn0nposznnd 40310 jm2.26lem3 40823 wopprc 40852 iunconnlem2 42555 icccncfext 43428 cncfiooicc 43435 fourierdlem25 43673 fourierdlem35 43683 fourierswlem 43771 fouriersw 43772 etransclem44 43819 sge0split 43947 islininds2 45825 digexp 45953 |
Copyright terms: Public domain | W3C validator |