| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 985 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: oran 991 neanior 3018 rexprg 4651 prneimg 4808 ord1eln01 8421 ord2eln012 8422 unfi 9095 ssxr 11203 isirred2 20324 aaliou3lem9 26274 mideulem2 28697 opphllem 28698 weiunfr 36440 bj-dfbi4 36546 topdifinffinlem 37320 icorempo 37324 dalawlem13 39862 cdleme22b 40320 aks6d1c2p2 42092 negn0nposznnd 42255 jm2.26lem3 42974 wopprc 43003 iunconnlem2 44908 icccncfext 45869 cncfiooicc 45876 fourierdlem25 46114 fourierdlem35 46124 fourierswlem 46212 fouriersw 46213 etransclem44 46260 sge0split 46391 islininds2 48470 digexp 48593 |
| Copyright terms: Public domain | W3C validator |