| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 985 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: oran 991 neanior 3021 rexprg 4650 prneimg 4806 ord1eln01 8411 ord2eln012 8412 unfi 9080 ssxr 11182 isirred2 20340 aaliou3lem9 26286 mideulem2 28713 opphllem 28714 weiunfr 36507 bj-dfbi4 36613 topdifinffinlem 37387 icorempo 37391 dalawlem13 39928 cdleme22b 40386 aks6d1c2p2 42158 negn0nposznnd 42321 jm2.26lem3 43040 wopprc 43069 iunconnlem2 44973 icccncfext 45931 cncfiooicc 45938 fourierdlem25 46176 fourierdlem35 46186 fourierswlem 46274 fouriersw 46275 etransclem44 46322 sge0split 46453 islininds2 48522 digexp 48645 |
| Copyright terms: Public domain | W3C validator |