| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 985 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: oran 991 neanior 3026 rexprg 4678 prneimg 4835 ord1eln01 8513 ord2eln012 8514 unfi 9190 ssxr 11309 isirred2 20386 aaliou3lem9 26315 mideulem2 28718 opphllem 28719 weiunfr 36490 bj-dfbi4 36596 topdifinffinlem 37370 icorempo 37374 dalawlem13 39907 cdleme22b 40365 aks6d1c2p2 42137 negn0nposznnd 42300 jm2.26lem3 43000 wopprc 43029 iunconnlem2 44934 icccncfext 45896 cncfiooicc 45903 fourierdlem25 46141 fourierdlem35 46151 fourierswlem 46239 fouriersw 46240 etransclem44 46287 sge0split 46418 islininds2 48440 digexp 48567 |
| Copyright terms: Public domain | W3C validator |