| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 985 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: oran 991 neanior 3022 rexprg 4651 prneimg 4807 ord1eln01 8419 ord2eln012 8420 unfi 9089 ssxr 11191 isirred2 20343 aaliou3lem9 26288 mideulem2 28715 opphllem 28716 weiunfr 36534 bj-dfbi4 36640 topdifinffinlem 37414 icorempo 37418 dalawlem13 40005 cdleme22b 40463 aks6d1c2p2 42235 negn0nposznnd 42403 jm2.26lem3 43121 wopprc 43150 iunconnlem2 45054 icccncfext 46012 cncfiooicc 46019 fourierdlem25 46257 fourierdlem35 46267 fourierswlem 46355 fouriersw 46356 etransclem44 46403 sge0split 46534 islininds2 48612 digexp 48735 |
| Copyright terms: Public domain | W3C validator |