![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version |
Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 985 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | bicomi 224 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
This theorem is referenced by: oran 991 neanior 3033 rexprg 4702 prneimg 4859 ord1eln01 8533 ord2eln012 8534 unfi 9210 ssxr 11328 isirred2 20438 aaliou3lem9 26407 mideulem2 28757 opphllem 28758 weiunfr 36450 bj-dfbi4 36556 topdifinffinlem 37330 icorempo 37334 dalawlem13 39866 cdleme22b 40324 aks6d1c2p2 42101 metakunt1 42187 negn0nposznnd 42296 jm2.26lem3 42990 wopprc 43019 iunconnlem2 44933 icccncfext 45843 cncfiooicc 45850 fourierdlem25 46088 fourierdlem35 46098 fourierswlem 46186 fouriersw 46187 etransclem44 46234 sge0split 46365 islininds2 48330 digexp 48457 |
Copyright terms: Public domain | W3C validator |