| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 985 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: oran 991 neanior 3034 rexprg 4696 prneimg 4853 ord1eln01 8535 ord2eln012 8536 unfi 9212 ssxr 11331 isirred2 20422 aaliou3lem9 26393 mideulem2 28743 opphllem 28744 weiunfr 36469 bj-dfbi4 36575 topdifinffinlem 37349 icorempo 37353 dalawlem13 39886 cdleme22b 40344 aks6d1c2p2 42121 metakunt1 42207 negn0nposznnd 42322 jm2.26lem3 43018 wopprc 43047 iunconnlem2 44960 icccncfext 45907 cncfiooicc 45914 fourierdlem25 46152 fourierdlem35 46162 fourierswlem 46250 fouriersw 46251 etransclem44 46298 sge0split 46429 islininds2 48406 digexp 48533 |
| Copyright terms: Public domain | W3C validator |