| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 985 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: oran 991 neanior 3018 rexprg 4661 prneimg 4818 ord1eln01 8460 ord2eln012 8461 unfi 9135 ssxr 11243 isirred2 20330 aaliou3lem9 26258 mideulem2 28661 opphllem 28662 weiunfr 36455 bj-dfbi4 36561 topdifinffinlem 37335 icorempo 37339 dalawlem13 39877 cdleme22b 40335 aks6d1c2p2 42107 negn0nposznnd 42270 jm2.26lem3 42990 wopprc 43019 iunconnlem2 44924 icccncfext 45885 cncfiooicc 45892 fourierdlem25 46130 fourierdlem35 46140 fourierswlem 46228 fouriersw 46229 etransclem44 46276 sge0split 46407 islininds2 48473 digexp 48596 |
| Copyright terms: Public domain | W3C validator |