Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version |
Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 980 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | bicomi 223 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: oran 986 nornotOLD 1527 neanior 3036 rexprg 4629 prneimg 4782 unfi 8917 ssxr 10975 isirred2 19858 aaliou3lem9 25415 mideulem2 26999 opphllem 27000 bj-dfbi4 34681 topdifinffinlem 35445 icorempo 35449 dalawlem13 37824 cdleme22b 38282 metakunt1 40053 negn0nposznnd 40231 jm2.26lem3 40739 wopprc 40768 iunconnlem2 42444 icccncfext 43318 cncfiooicc 43325 fourierdlem25 43563 fourierdlem35 43573 fourierswlem 43661 fouriersw 43662 etransclem44 43709 sge0split 43837 islininds2 45713 digexp 45841 |
Copyright terms: Public domain | W3C validator |