![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.56 | Structured version Visualization version GIF version |
Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.56 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 984 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | bicomi 224 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 |
This theorem is referenced by: oran 990 neanior 3041 rexprg 4721 prneimg 4879 ord1eln01 8552 ord2eln012 8553 unfi 9238 ssxr 11359 isirred2 20447 aaliou3lem9 26410 mideulem2 28760 opphllem 28761 weiunfr 36433 bj-dfbi4 36539 topdifinffinlem 37313 icorempo 37317 dalawlem13 39840 cdleme22b 40298 aks6d1c2p2 42076 metakunt1 42162 negn0nposznnd 42271 jm2.26lem3 42958 wopprc 42987 iunconnlem2 44906 icccncfext 45808 cncfiooicc 45815 fourierdlem25 46053 fourierdlem35 46063 fourierswlem 46151 fouriersw 46152 etransclem44 46199 sge0split 46330 islininds2 48213 digexp 48341 |
Copyright terms: Public domain | W3C validator |