MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.56 Structured version   Visualization version   GIF version

Theorem pm4.56 990
Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.56 ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))

Proof of Theorem pm4.56
StepHypRef Expression
1 ioran 985 . 2 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
21bicomi 224 1 ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  oran  991  neanior  3026  rexprg  4678  prneimg  4835  ord1eln01  8513  ord2eln012  8514  unfi  9190  ssxr  11309  isirred2  20386  aaliou3lem9  26315  mideulem2  28718  opphllem  28719  weiunfr  36490  bj-dfbi4  36596  topdifinffinlem  37370  icorempo  37374  dalawlem13  39907  cdleme22b  40365  aks6d1c2p2  42137  negn0nposznnd  42300  jm2.26lem3  43000  wopprc  43029  iunconnlem2  44934  icccncfext  45896  cncfiooicc  45903  fourierdlem25  46141  fourierdlem35  46151  fourierswlem  46239  fouriersw  46240  etransclem44  46287  sge0split  46418  islininds2  48440  digexp  48567
  Copyright terms: Public domain W3C validator