Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfbi3 | Structured version Visualization version GIF version |
Description: An alternate definition of the biconditional. Theorem *5.23 of [WhiteheadRussell] p. 124. (Contributed by NM, 27-Jun-2002.) (Proof shortened by Wolf Lammen, 3-Nov-2013.) (Proof shortened by NM, 29-Oct-2021.) |
Ref | Expression |
---|---|
dfbi3 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con34b 315 | . . 3 ⊢ ((𝜓 → 𝜑) ↔ (¬ 𝜑 → ¬ 𝜓)) | |
2 | 1 | anbi2i 622 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → ¬ 𝜓))) |
3 | dfbi2 474 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
4 | cases2 1044 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → ¬ 𝜓))) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: pm5.24 1047 nanbi 1492 raaan2 4452 2reu4lem 4453 ifbi 4478 sqf11 26193 bj-dfbi4 34681 |
Copyright terms: Public domain | W3C validator |