MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfbi3 Structured version   Visualization version   GIF version

Theorem dfbi3 1046
Description: An alternate definition of the biconditional. Theorem *5.23 of [WhiteheadRussell] p. 124. (Contributed by NM, 27-Jun-2002.) (Proof shortened by Wolf Lammen, 3-Nov-2013.) (Proof shortened by NM, 29-Oct-2021.)
Assertion
Ref Expression
dfbi3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)))

Proof of Theorem dfbi3
StepHypRef Expression
1 con34b 315 . . 3 ((𝜓𝜑) ↔ (¬ 𝜑 → ¬ 𝜓))
21anbi2i 622 . 2 (((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ((𝜑𝜓) ∧ (¬ 𝜑 → ¬ 𝜓)))
3 dfbi2 474 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
4 cases2 1044 . 2 (((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ↔ ((𝜑𝜓) ∧ (¬ 𝜑 → ¬ 𝜓)))
52, 3, 43bitr4i 302 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  pm5.24  1047  nanbi  1492  raaan2  4452  2reu4lem  4453  ifbi  4478  sqf11  26193  bj-dfbi4  34681
  Copyright terms: Public domain W3C validator