| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-exlimmpbi | Structured version Visualization version GIF version | ||
| Description: Lemma for theorems of the vtoclg 3554 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-exlimmpbi.nf | ⊢ Ⅎ𝑥𝜓 |
| bj-exlimmpbi.maj | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| bj-exlimmpbi.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| bj-exlimmpbi | ⊢ (∃𝑥𝜒 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-exlimmpbi.nf | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | bj-exlimmpbi.min | . . 3 ⊢ 𝜑 | |
| 3 | bj-exlimmpbi.maj | . . 3 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | mpbii 233 | . 2 ⊢ (𝜒 → 𝜓) |
| 5 | 1, 4 | exlimi 2217 | 1 ⊢ (∃𝑥𝜒 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |