Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-exlimmpbi Structured version   Visualization version   GIF version

Theorem bj-exlimmpbi 34348
 Description: Lemma for theorems of the vtoclg 3518 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-exlimmpbi.nf 𝑥𝜓
bj-exlimmpbi.maj (𝜒 → (𝜑𝜓))
bj-exlimmpbi.min 𝜑
Assertion
Ref Expression
bj-exlimmpbi (∃𝑥𝜒𝜓)

Proof of Theorem bj-exlimmpbi
StepHypRef Expression
1 bj-exlimmpbi.nf . 2 𝑥𝜓
2 bj-exlimmpbi.min . . 3 𝜑
3 bj-exlimmpbi.maj . . 3 (𝜒 → (𝜑𝜓))
42, 3mpbii 236 . 2 (𝜒𝜓)
51, 4exlimi 2216 1 (∃𝑥𝜒𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∃wex 1781  Ⅎwnf 1785 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-12 2176 This theorem depends on definitions:  df-bi 210  df-ex 1782  df-nf 1786 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator