Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-exlimmpbi Structured version   Visualization version   GIF version

Theorem bj-exlimmpbi 35025
Description: Lemma for theorems of the vtoclg 3495 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-exlimmpbi.nf 𝑥𝜓
bj-exlimmpbi.maj (𝜒 → (𝜑𝜓))
bj-exlimmpbi.min 𝜑
Assertion
Ref Expression
bj-exlimmpbi (∃𝑥𝜒𝜓)

Proof of Theorem bj-exlimmpbi
StepHypRef Expression
1 bj-exlimmpbi.nf . 2 𝑥𝜓
2 bj-exlimmpbi.min . . 3 𝜑
3 bj-exlimmpbi.maj . . 3 (𝜒 → (𝜑𝜓))
42, 3mpbii 232 . 2 (𝜒𝜓)
51, 4exlimi 2213 1 (∃𝑥𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator