![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclg | Structured version Visualization version GIF version |
Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) Avoid ax-12 2172. (Revised by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
Ref | Expression |
---|---|
vtoclg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclg.2 | . . 3 ⊢ 𝜑 | |
2 | vtoclg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbii 232 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
4 | 3 | vtocleg 3546 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Copyright terms: Public domain | W3C validator |