| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version | ||
| Description: Inference associated with 19.23 2212. See exlimiv 1930 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| exlimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | 19.23 2212 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| 3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | mpgbi 1798 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbalexOLD 2244 equsexv 2269 equs5av 2277 exlimih 2289 equs5aALT 2364 equs5eALT 2365 equsex 2416 exdistrf 2445 equs5a 2455 equs5e 2456 dfmoeu 2529 moanim 2613 euan 2614 moexexlem 2619 2eu6 2650 ceqsexOLD 3497 sbhypfOLD 3511 vtoclef 3529 vtoclgf 3535 vtoclg1f 3536 reusv2lem1 5353 copsexgw 5450 copsexg 5451 rexopabb 5488 ralxpf 5810 dmcoss 5938 fv3 6876 opabiota 6943 oprabidw 7418 zfregcl 9547 scottex 9838 scott0 9839 dfac5lem5 10080 zfcndpow 10569 zfcndreg 10570 zfcndinf 10571 reclem2pr 11001 mreiincl 17557 brabgaf 32536 bnj607 34906 bnj900 34919 exisym1 36412 exlimii 36819 bj-exlimmpi 36900 bj-exlimmpbi 36901 bj-exlimmpbir 36902 dihglblem5 41292 tworepnotupword 46884 eu2ndop1stv 47126 pgind 49706 |
| Copyright terms: Public domain | W3C validator |