| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version | ||
| Description: Inference associated with 19.23 2214. See exlimiv 1931 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| exlimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | 19.23 2214 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| 3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | mpgbi 1799 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: sbalexOLD 2246 equsexv 2271 equs5av 2279 exlimih 2291 equs5aALT 2366 equs5eALT 2367 equsex 2418 exdistrf 2447 equs5a 2457 equs5e 2458 dfmoeu 2531 moanim 2615 euan 2616 moexexlem 2621 2eu6 2652 ceqsexOLD 3486 sbhypfOLD 3500 vtoclef 3518 vtoclgf 3524 vtoclg1f 3525 reusv2lem1 5336 copsexgw 5430 copsexg 5431 rexopabb 5468 ralxpf 5786 dmcossOLD 5915 fv3 6840 opabiota 6904 oprabidw 7377 zfregclOLD 9481 scottex 9778 scott0 9779 dfac5lem5 10018 zfcndpow 10507 zfcndreg 10508 zfcndinf 10509 reclem2pr 10939 mreiincl 17498 brabgaf 32587 bnj607 34926 bnj900 34939 exisym1 36464 exlimii 36871 bj-exlimmpi 36952 bj-exlimmpbi 36953 bj-exlimmpbir 36954 dihglblem5 41343 eu2ndop1stv 47162 pgind 49755 |
| Copyright terms: Public domain | W3C validator |