![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version |
Description: Inference associated with 19.23 2212. See exlimiv 1929 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | 19.23 2212 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | mpgbi 1796 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: sbalexOLD 2244 equsexv 2269 equs5av 2280 exlimih 2293 equs5aALT 2372 equs5eALT 2373 equsex 2426 exdistrf 2455 equs5a 2465 equs5e 2466 dfmoeu 2539 moanim 2623 euan 2624 moexexlem 2629 2eu6 2660 ceqsexOLD 3541 sbhypfOLD 3557 vtoclef 3575 vtoclgf 3581 vtoclg1f 3582 reusv2lem1 5416 copsexgw 5510 copsexg 5511 rexopabb 5547 0nelopabOLD 5587 ralxpf 5871 dmcoss 5997 fv3 6938 opabiota 7004 oprabidw 7479 zfregcl 9663 scottex 9954 scott0 9955 dfac5lem5 10196 zfcndpow 10685 zfcndreg 10686 zfcndinf 10687 reclem2pr 11117 mreiincl 17654 brabgaf 32630 cnvoprabOLD 32734 bnj607 34892 bnj900 34905 exisym1 36390 exlimii 36797 bj-exlimmpi 36878 bj-exlimmpbi 36879 bj-exlimmpbir 36880 dihglblem5 41255 tworepnotupword 46805 eu2ndop1stv 47040 pgind 48809 |
Copyright terms: Public domain | W3C validator |