MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimi Structured version   Visualization version   GIF version

Theorem exlimi 2220
Description: Inference associated with 19.23 2214. See exlimiv 1931 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
exlimi.1 𝑥𝜓
exlimi.2 (𝜑𝜓)
Assertion
Ref Expression
exlimi (∃𝑥𝜑𝜓)

Proof of Theorem exlimi
StepHypRef Expression
1 exlimi.1 . . 3 𝑥𝜓
2119.23 2214 . 2 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
3 exlimi.2 . 2 (𝜑𝜓)
42, 3mpgbi 1799 1 (∃𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-nf 1785
This theorem is referenced by:  sbalexOLD  2246  equsexv  2271  equs5av  2279  exlimih  2291  equs5aALT  2366  equs5eALT  2367  equsex  2418  exdistrf  2447  equs5a  2457  equs5e  2458  dfmoeu  2531  moanim  2615  euan  2616  moexexlem  2621  2eu6  2652  ceqsexOLD  3486  sbhypfOLD  3500  vtoclef  3518  vtoclgf  3524  vtoclg1f  3525  reusv2lem1  5336  copsexgw  5430  copsexg  5431  rexopabb  5468  ralxpf  5786  dmcossOLD  5915  fv3  6840  opabiota  6904  oprabidw  7377  zfregclOLD  9481  scottex  9778  scott0  9779  dfac5lem5  10018  zfcndpow  10507  zfcndreg  10508  zfcndinf  10509  reclem2pr  10939  mreiincl  17498  brabgaf  32587  bnj607  34926  bnj900  34939  exisym1  36464  exlimii  36871  bj-exlimmpi  36952  bj-exlimmpbi  36953  bj-exlimmpbir  36954  dihglblem5  41343  eu2ndop1stv  47162  pgind  49755
  Copyright terms: Public domain W3C validator