| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version | ||
| Description: Inference associated with 19.23 2212. See exlimiv 1930 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| exlimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | 19.23 2212 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| 3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | mpgbi 1798 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbalexOLD 2244 equsexv 2269 equs5av 2277 exlimih 2289 equs5aALT 2365 equs5eALT 2366 equsex 2417 exdistrf 2446 equs5a 2456 equs5e 2457 dfmoeu 2530 moanim 2614 euan 2615 moexexlem 2620 2eu6 2651 ceqsexOLD 3500 sbhypfOLD 3514 vtoclef 3532 vtoclgf 3538 vtoclg1f 3539 reusv2lem1 5356 copsexgw 5453 copsexg 5454 rexopabb 5491 ralxpf 5813 dmcoss 5941 fv3 6879 opabiota 6946 oprabidw 7421 zfregcl 9554 scottex 9845 scott0 9846 dfac5lem5 10087 zfcndpow 10576 zfcndreg 10577 zfcndinf 10578 reclem2pr 11008 mreiincl 17564 brabgaf 32543 bnj607 34913 bnj900 34926 exisym1 36419 exlimii 36826 bj-exlimmpi 36907 bj-exlimmpbi 36908 bj-exlimmpbir 36909 dihglblem5 41299 tworepnotupword 46891 eu2ndop1stv 47130 pgind 49710 |
| Copyright terms: Public domain | W3C validator |