Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version |
Description: Inference associated with 19.23 2202. See exlimiv 1931 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | 19.23 2202 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | mpgbi 1798 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1779 Ⅎwnf 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-ex 1780 df-nf 1784 |
This theorem is referenced by: sbalex 2233 equsexv 2258 equs5av 2269 exlimih 2284 equs5aALT 2362 equs5eALT 2363 equsex 2416 exdistrf 2445 equs5a 2455 equs5e 2456 dfmoeu 2534 moanim 2620 euan 2621 moexexlem 2626 2eu6 2656 ceqsex 3483 sbhypf 3496 vtoclgf 3508 vtoclg1f 3509 vtoclef 3528 rspn0OLD 4293 reusv2lem1 5330 copsexgw 5417 copsexg 5418 copsex2gOLD 5421 rexopabb 5454 0nelopabOLD 5494 ralxpf 5768 dmcoss 5892 fv3 6822 opabiota 6883 oprabidw 7338 zfregcl 9397 scottex 9687 scott0 9688 dfac5lem5 9929 zfcndpow 10418 zfcndreg 10419 zfcndinf 10420 reclem2pr 10850 mreiincl 17350 brabgaf 30993 cnvoprabOLD 31100 bnj607 32941 bnj900 32954 exisym1 34658 exlimii 35058 bj-exlimmpi 35141 bj-exlimmpbi 35142 bj-exlimmpbir 35143 dihglblem5 39354 eu2ndop1stv 44675 tworepnotupword 46579 |
Copyright terms: Public domain | W3C validator |