![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version |
Description: Inference associated with 19.23 2209. See exlimiv 1928 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | 19.23 2209 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | mpgbi 1795 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 Ⅎwnf 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-nf 1781 |
This theorem is referenced by: sbalexOLD 2241 equsexv 2266 equs5av 2275 exlimih 2288 equs5aALT 2367 equs5eALT 2368 equsex 2421 exdistrf 2450 equs5a 2460 equs5e 2461 dfmoeu 2534 moanim 2618 euan 2619 moexexlem 2624 2eu6 2655 ceqsexOLD 3529 sbhypfOLD 3545 vtoclef 3563 vtoclgf 3569 vtoclg1f 3570 reusv2lem1 5404 copsexgw 5501 copsexg 5502 rexopabb 5538 ralxpf 5860 dmcoss 5988 fv3 6925 opabiota 6991 oprabidw 7462 zfregcl 9632 scottex 9923 scott0 9924 dfac5lem5 10165 zfcndpow 10654 zfcndreg 10655 zfcndinf 10656 reclem2pr 11086 mreiincl 17641 brabgaf 32628 cnvoprabOLD 32738 bnj607 34909 bnj900 34922 exisym1 36407 exlimii 36814 bj-exlimmpi 36895 bj-exlimmpbi 36896 bj-exlimmpbir 36897 dihglblem5 41281 tworepnotupword 46840 eu2ndop1stv 47075 pgind 48948 |
Copyright terms: Public domain | W3C validator |