Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version |
Description: Inference associated with 19.23 2204. See exlimiv 1933 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | 19.23 2204 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | mpgbi 1801 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: sbalex 2235 equsexv 2260 equs5av 2271 exlimih 2286 equs5aALT 2364 equs5eALT 2365 equsex 2418 exdistrf 2447 equs5a 2457 equs5e 2458 dfmoeu 2536 moanim 2622 euan 2623 moexexlem 2628 2eu6 2658 ceqsex 3477 sbhypf 3490 vtoclgf 3502 vtoclg1f 3503 vtoclef 3522 rspn0OLD 4289 reusv2lem1 5323 copsexgw 5406 copsexg 5407 copsex2gOLD 5410 rexopabb 5443 0nelopabOLD 5483 ralxpf 5757 dmcoss 5882 fv3 6794 opabiota 6853 oprabidw 7308 zfregcl 9351 scottex 9641 scott0 9642 dfac5lem5 9881 zfcndpow 10370 zfcndreg 10371 zfcndinf 10372 reclem2pr 10802 mreiincl 17303 brabgaf 30945 cnvoprabOLD 31052 bnj607 32893 bnj900 32906 exisym1 34610 exlimii 35011 bj-exlimmpi 35094 bj-exlimmpbi 35095 bj-exlimmpbir 35096 dihglblem5 39309 eu2ndop1stv 44584 tworepnotupword 46488 |
Copyright terms: Public domain | W3C validator |