Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version |
Description: Inference associated with 19.23 2207. See exlimiv 1936 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | 19.23 2207 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | mpgbi 1804 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1785 Ⅎwnf 1789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-ex 1786 df-nf 1790 |
This theorem is referenced by: sbalex 2238 equsexv 2263 equs5av 2274 exlimih 2289 equs5aALT 2365 equs5eALT 2366 equsex 2419 exdistrf 2448 equs5a 2458 equs5e 2459 dfmoeu 2537 moanim 2623 euan 2624 moexexlem 2629 2eu6 2659 ceqsex 3476 sbhypf 3489 vtoclgf 3501 vtoclg1f 3502 vtoclef 3521 rspn0OLD 4292 reusv2lem1 5324 copsexgw 5406 copsexg 5407 copsex2gOLD 5410 rexopabb 5442 0nelopabOLD 5480 ralxpf 5752 dmcoss 5877 fv3 6786 opabiota 6845 oprabidw 7299 zfregcl 9314 scottex 9627 scott0 9628 dfac5lem5 9867 zfcndpow 10356 zfcndreg 10357 zfcndinf 10358 reclem2pr 10788 mreiincl 17286 brabgaf 30927 cnvoprabOLD 31034 bnj607 32875 bnj900 32888 exisym1 34592 exlimii 34993 bj-exlimmpi 35076 bj-exlimmpbi 35077 bj-exlimmpbir 35078 dihglblem5 39291 eu2ndop1stv 44568 |
Copyright terms: Public domain | W3C validator |