| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version | ||
| Description: Inference associated with 19.23 2216. See exlimiv 1931 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| exlimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | 19.23 2216 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| 3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | mpgbi 1799 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: sbalexOLD 2248 equsexv 2273 equs5av 2281 exlimih 2293 equs5aALT 2368 equs5eALT 2369 equsex 2420 exdistrf 2449 equs5a 2459 equs5e 2460 dfmoeu 2533 moanim 2617 euan 2618 moexexlem 2623 2eu6 2654 vtoclef 3517 vtoclgf 3522 vtoclg1f 3523 reusv2lem1 5340 copsexgw 5435 copsexg 5436 rexopabb 5473 ralxpf 5792 dmcossOLD 5922 fv3 6849 opabiota 6913 oprabidw 7386 zfregclOLD 9492 scottex 9789 scott0 9790 dfac5lem5 10029 zfcndpow 10518 zfcndreg 10519 zfcndinf 10520 reclem2pr 10950 mreiincl 17506 brabgaf 32610 bnj607 35000 bnj900 35013 exisym1 36540 exlimii 36948 bj-exlimmpi 37029 bj-exlimmpbi 37030 bj-exlimmpbir 37031 dihglblem5 41470 eu2ndop1stv 47287 pgind 49878 |
| Copyright terms: Public domain | W3C validator |