| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version | ||
| Description: Inference associated with 19.23 2212. See exlimiv 1930 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| exlimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | 19.23 2212 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| 3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | mpgbi 1798 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbalexOLD 2244 equsexv 2269 equs5av 2278 exlimih 2290 equs5aALT 2369 equs5eALT 2370 equsex 2423 exdistrf 2452 equs5a 2462 equs5e 2463 dfmoeu 2536 moanim 2620 euan 2621 moexexlem 2626 2eu6 2657 ceqsexOLD 3515 sbhypfOLD 3529 vtoclef 3547 vtoclgf 3553 vtoclg1f 3554 reusv2lem1 5373 copsexgw 5470 copsexg 5471 rexopabb 5508 ralxpf 5831 dmcoss 5959 fv3 6899 opabiota 6966 oprabidw 7441 zfregcl 9613 scottex 9904 scott0 9905 dfac5lem5 10146 zfcndpow 10635 zfcndreg 10636 zfcndinf 10637 reclem2pr 11067 mreiincl 17613 brabgaf 32593 bnj607 34952 bnj900 34965 exisym1 36447 exlimii 36854 bj-exlimmpi 36935 bj-exlimmpbi 36936 bj-exlimmpbir 36937 dihglblem5 41322 tworepnotupword 46882 eu2ndop1stv 47121 pgind 49548 |
| Copyright terms: Public domain | W3C validator |