| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version | ||
| Description: Inference associated with 19.23 2212. See exlimiv 1930 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| exlimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | 19.23 2212 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| 3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | mpgbi 1798 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbalexOLD 2244 equsexv 2269 equs5av 2277 exlimih 2289 equs5aALT 2364 equs5eALT 2365 equsex 2416 exdistrf 2445 equs5a 2455 equs5e 2456 dfmoeu 2529 moanim 2613 euan 2614 moexexlem 2619 2eu6 2650 ceqsexOLD 3488 sbhypfOLD 3502 vtoclef 3520 vtoclgf 3526 vtoclg1f 3527 reusv2lem1 5340 copsexgw 5437 copsexg 5438 rexopabb 5475 ralxpf 5793 dmcossOLD 5921 fv3 6844 opabiota 6909 oprabidw 7384 zfregclOLD 9506 scottex 9800 scott0 9801 dfac5lem5 10040 zfcndpow 10529 zfcndreg 10530 zfcndinf 10531 reclem2pr 10961 mreiincl 17516 brabgaf 32569 bnj607 34885 bnj900 34898 exisym1 36400 exlimii 36807 bj-exlimmpi 36888 bj-exlimmpbi 36889 bj-exlimmpbir 36890 dihglblem5 41280 tworepnotupword 46871 eu2ndop1stv 47113 pgind 49706 |
| Copyright terms: Public domain | W3C validator |