Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-falor2 Structured version   Visualization version   GIF version

Theorem bj-falor2 33926
Description: Dual of truan 1549. (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-falor2 ((⊥ ∨ 𝜑) ↔ 𝜑)

Proof of Theorem bj-falor2
StepHypRef Expression
1 falim 1555 . . 3 (⊥ → 𝜑)
21bj-jaoi1 33911 . 2 ((⊥ ∨ 𝜑) → 𝜑)
3 olc 865 . 2 (𝜑 → (⊥ ∨ 𝜑))
42, 3impbii 212 1 ((⊥ ∨ 𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wo 844  wfal 1550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-or 845  df-tru 1541  df-fal 1551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator