Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-bibibi | Structured version Visualization version GIF version |
Description: A property of the biconditional. (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bibibi | ⊢ (𝜑 ↔ (𝜓 ↔ (𝜑 ↔ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.501 366 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) | |
2 | bianir 1055 | . . . 4 ⊢ ((𝜓 ∧ (𝜑 ↔ 𝜓)) → 𝜑) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜓 → ((𝜑 ↔ 𝜓) → 𝜑)) |
4 | bibif 371 | . . . . 5 ⊢ (¬ 𝜓 → ((𝜑 ↔ 𝜓) ↔ ¬ 𝜑)) | |
5 | 4 | con2bid 354 | . . . 4 ⊢ (¬ 𝜓 → (𝜑 ↔ ¬ (𝜑 ↔ 𝜓))) |
6 | 5 | biimprd 247 | . . 3 ⊢ (¬ 𝜓 → (¬ (𝜑 ↔ 𝜓) → 𝜑)) |
7 | 3, 6 | bija 381 | . 2 ⊢ ((𝜓 ↔ (𝜑 ↔ 𝜓)) → 𝜑) |
8 | 1, 7 | impbii 208 | 1 ⊢ (𝜑 ↔ (𝜓 ↔ (𝜑 ↔ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |