Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-jaoi1 | Structured version Visualization version GIF version |
Description: Shortens orfa2 36244 (58>53), pm1.2 901 (20>18), pm1.2 901 (20>18), pm2.4 904 (31>25), pm2.41 905 (31>25), pm2.42 940 (38>32), pm3.2ni 878 (43>39), pm4.44 994 (55>51). (Contributed by BJ, 30-Sep-2019.) |
Ref | Expression |
---|---|
bj-jaoi1.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
bj-jaoi1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-jaoi1.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | jaoi 854 | 1 ⊢ ((𝜑 ∨ 𝜓) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: bj-falor2 34767 bj-prmoore 35286 |
Copyright terms: Public domain | W3C validator |