Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-jaoi1 Structured version   Visualization version   GIF version

Theorem bj-jaoi1 34679
Description: Shortens orfa2 36171 (58>53), pm1.2 900 (20>18), pm1.2 900 (20>18), pm2.4 903 (31>25), pm2.41 904 (31>25), pm2.42 939 (38>32), pm3.2ni 877 (43>39), pm4.44 993 (55>51). (Contributed by BJ, 30-Sep-2019.)
Hypothesis
Ref Expression
bj-jaoi1.1 (𝜑𝜓)
Assertion
Ref Expression
bj-jaoi1 ((𝜑𝜓) → 𝜓)

Proof of Theorem bj-jaoi1
StepHypRef Expression
1 bj-jaoi1.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜓𝜓)
31, 2jaoi 853 1 ((𝜑𝜓) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  bj-falor2  34694  bj-prmoore  35213
  Copyright terms: Public domain W3C validator