Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-modalb Structured version   Visualization version   GIF version

Theorem bj-modalb 34877
Description: A short form of the axiom B of modal logic using only primitive symbols (→ , ¬ , ∀). (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-modalb 𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)

Proof of Theorem bj-modalb
StepHypRef Expression
1 axc7 2314 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
21con1i 147 1 𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-ex 1786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator