| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-wnf1 | Structured version Visualization version GIF version | ||
| Description: When 𝜑 is substituted for 𝜓, this is the first half of nonfreness (. → ∀) of the weak form of nonfreeness (∃ → ∀). (Contributed by BJ, 9-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-wnf1 | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-modal4e 36691 | . . 3 ⊢ (∃𝑥∃𝑥𝜑 → ∃𝑥𝜑) | |
| 2 | hba1 2292 | . . 3 ⊢ (∀𝑥𝜓 → ∀𝑥∀𝑥𝜓) | |
| 3 | 1, 2 | imim12i 62 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → (∃𝑥∃𝑥𝜑 → ∀𝑥∀𝑥𝜓)) |
| 4 | 19.38 1838 | . 2 ⊢ ((∃𝑥∃𝑥𝜑 → ∀𝑥∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: bj-wnfanf 36695 bj-wnfenf 36696 bj-wnfnf 36715 |
| Copyright terms: Public domain | W3C validator |