MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc7 Structured version   Visualization version   GIF version

Theorem axc7 2316
Description: Show that the original axiom ax-c7 38867 can be derived from ax-10 2139 (hbn1 2140), sp 2181 and propositional calculus. See ax10fromc7 38877 for the rederivation of ax-10 2139 from ax-c7 38867.

Normally, axc7 2316 should be used rather than ax-c7 38867, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.)

Assertion
Ref Expression
axc7 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)

Proof of Theorem axc7
StepHypRef Expression
1 sp 2181 . 2 (∀𝑥𝜑𝜑)
2 hbn1 2140 . 2 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
31, 2nsyl4 158 1 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-ex 1777
This theorem is referenced by:  modal-b  2318  axc10  2388  hbntg  35787  bj-modalb  36699  bj-axc10v  36776  axc5c4c711  44397  hbntal  44551
  Copyright terms: Public domain W3C validator