MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc7 Structured version   Visualization version   GIF version

Theorem axc7 2318
Description: Show that the original axiom ax-c7 38923 can be derived from ax-10 2144 (hbn1 2145), sp 2186 and propositional calculus. See ax10fromc7 38933 for the rederivation of ax-10 2144 from ax-c7 38923.

Normally, axc7 2318 should be used rather than ax-c7 38923, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.)

Assertion
Ref Expression
axc7 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)

Proof of Theorem axc7
StepHypRef Expression
1 sp 2186 . 2 (∀𝑥𝜑𝜑)
2 hbn1 2145 . 2 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
31, 2nsyl4 158 1 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  modal-b  2320  axc10  2385  hbntg  35838  bj-modalb  36749  bj-axc10v  36826  axc5c4c711  44433  hbntal  44585
  Copyright terms: Public domain W3C validator