Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc7 | Structured version Visualization version GIF version |
Description: Show that the original
axiom ax-c7 36878 can be derived from ax-10 2140
(hbn1 2141) , sp 2179 and propositional calculus. See ax10fromc7 36888 for the
rederivation of ax-10 2140 from ax-c7 36878.
Normally, axc7 2314 should be used rather than ax-c7 36878, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.) |
Ref | Expression |
---|---|
axc7 | ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2179 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | hbn1 2141 | . 2 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
3 | 1, 2 | nsyl4 158 | 1 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-ex 1786 |
This theorem is referenced by: modal-b 2316 axc10 2386 hbntg 33760 bj-modalb 34877 bj-axc10v 34954 axc5c4c711 41972 hbntal 42126 |
Copyright terms: Public domain | W3C validator |