MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc7 Structured version   Visualization version   GIF version

Theorem axc7 2321
Description: Show that the original axiom ax-c7 38841 can be derived from ax-10 2141 (hbn1 2142), sp 2184 and propositional calculus. See ax10fromc7 38851 for the rederivation of ax-10 2141 from ax-c7 38841.

Normally, axc7 2321 should be used rather than ax-c7 38841, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.)

Assertion
Ref Expression
axc7 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)

Proof of Theorem axc7
StepHypRef Expression
1 sp 2184 . 2 (∀𝑥𝜑𝜑)
2 hbn1 2142 . 2 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
31, 2nsyl4 158 1 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  modal-b  2323  axc10  2393  hbntg  35769  bj-modalb  36682  bj-axc10v  36759  axc5c4c711  44370  hbntal  44524
  Copyright terms: Public domain W3C validator