| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc7 | Structured version Visualization version GIF version | ||
| Description: Show that the original
axiom ax-c7 38923 can be derived from ax-10 2144
(hbn1 2145), sp 2186 and propositional calculus. See ax10fromc7 38933 for the
rederivation of ax-10 2144 from ax-c7 38923.
Normally, axc7 2318 should be used rather than ax-c7 38923, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.) |
| Ref | Expression |
|---|---|
| axc7 | ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2186 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | hbn1 2145 | . 2 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
| 3 | 1, 2 | nsyl4 158 | 1 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: modal-b 2320 axc10 2385 hbntg 35838 bj-modalb 36749 bj-axc10v 36826 axc5c4c711 44433 hbntal 44585 |
| Copyright terms: Public domain | W3C validator |