Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc7 | Structured version Visualization version GIF version |
Description: Show that the original
axiom ax-c7 36899 can be derived from ax-10 2137
(hbn1 2138) , sp 2176 and propositional calculus. See ax10fromc7 36909 for the
rederivation of ax-10 2137 from ax-c7 36899.
Normally, axc7 2311 should be used rather than ax-c7 36899, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.) |
Ref | Expression |
---|---|
axc7 | ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2176 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | hbn1 2138 | . 2 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
3 | 1, 2 | nsyl4 158 | 1 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: modal-b 2313 axc10 2385 hbntg 33781 bj-modalb 34898 bj-axc10v 34975 axc5c4c711 42019 hbntal 42173 |
Copyright terms: Public domain | W3C validator |