MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc7 Structured version   Visualization version   GIF version

Theorem axc7 2310
Description: Show that the original axiom ax-c7 37743 can be derived from ax-10 2137 (hbn1 2138), sp 2176 and propositional calculus. See ax10fromc7 37753 for the rederivation of ax-10 2137 from ax-c7 37743.

Normally, axc7 2310 should be used rather than ax-c7 37743, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.)

Assertion
Ref Expression
axc7 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)

Proof of Theorem axc7
StepHypRef Expression
1 sp 2176 . 2 (∀𝑥𝜑𝜑)
2 hbn1 2138 . 2 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
31, 2nsyl4 158 1 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1782
This theorem is referenced by:  modal-b  2312  axc10  2384  hbntg  34765  bj-modalb  35582  bj-axc10v  35659  axc5c4c711  43145  hbntal  43299
  Copyright terms: Public domain W3C validator