Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-modal4e | Structured version Visualization version GIF version |
Description: First-order logic form of the modal axiom (4) using existential quantifiers. Dual statement of bj-modal4 34896 (hba1 2290). (Contributed by BJ, 21-Dec-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-modal4e | ⊢ (∃𝑥∃𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-modal4 34896 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥∀𝑥 ¬ 𝜑) | |
2 | alnex 1784 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
3 | 2exnaln 1831 | . . . 4 ⊢ (∃𝑥∃𝑥𝜑 ↔ ¬ ∀𝑥∀𝑥 ¬ 𝜑) | |
4 | 3 | con2bii 358 | . . 3 ⊢ (∀𝑥∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥∃𝑥𝜑) |
5 | 1, 2, 4 | 3imtr3i 291 | . 2 ⊢ (¬ ∃𝑥𝜑 → ¬ ∃𝑥∃𝑥𝜑) |
6 | 5 | con4i 114 | 1 ⊢ (∃𝑥∃𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: bj-wnf1 34899 bj-nnfe1 34942 |
Copyright terms: Public domain | W3C validator |