| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-modal4e | Structured version Visualization version GIF version | ||
| Description: First-order logic form of the modal axiom (4) using existential quantifiers. Dual statement of bj-modal4 36715 (hba1 2293). (Contributed by BJ, 21-Dec-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-modal4e | ⊢ (∃𝑥∃𝑥𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-modal4 36715 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥∀𝑥 ¬ 𝜑) | |
| 2 | alnex 1781 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 3 | 2exnaln 1829 | . . . 4 ⊢ (∃𝑥∃𝑥𝜑 ↔ ¬ ∀𝑥∀𝑥 ¬ 𝜑) | |
| 4 | 3 | con2bii 357 | . . 3 ⊢ (∀𝑥∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥∃𝑥𝜑) |
| 5 | 1, 2, 4 | 3imtr3i 291 | . 2 ⊢ (¬ ∃𝑥𝜑 → ¬ ∃𝑥∃𝑥𝜑) |
| 6 | 5 | con4i 114 | 1 ⊢ (∃𝑥∃𝑥𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bj-wnf1 36718 bj-nnfe1 36761 |
| Copyright terms: Public domain | W3C validator |