Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nexdt | Structured version Visualization version GIF version |
Description: Closed form of nexd 2214. (Contributed by BJ, 20-Oct-2019.) |
Ref | Expression |
---|---|
bj-nexdt | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5r 2187 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
2 | bj-nexdh 34809 | . 2 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) → ((𝜑 → ∀𝑥𝜑) → (𝜑 → ¬ ∃𝑥𝜓))) | |
3 | 1, 2 | syl5com 31 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: bj-nexdvt 34880 |
Copyright terms: Public domain | W3C validator |