|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nexdt | Structured version Visualization version GIF version | ||
| Description: Closed form of nexd 2221. (Contributed by BJ, 20-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| bj-nexdt | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nf5r 2194 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 2 | bj-nexdh 36629 | . 2 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) → ((𝜑 → ∀𝑥𝜑) → (𝜑 → ¬ ∃𝑥𝜓))) | |
| 3 | 1, 2 | syl5com 31 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: bj-nexdvt 36699 | 
| Copyright terms: Public domain | W3C validator |