Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nf5r | Structured version Visualization version GIF version |
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.) df-nf 1787 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by Wolf Lammen, 23-Nov-2023.) |
Ref | Expression |
---|---|
nf5r | ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2174 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
3 | 2 | nfrd 1794 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nf5rd 2189 19.3t 2194 sbft 2262 bj-alrim 34875 bj-nexdt 34879 bj-cbv3tb 34969 bj-nfs1t2 34973 bj-equsal1t 35005 stdpc5t 35010 bj-axc14 35040 wl-nfeqfb 35695 |
Copyright terms: Public domain | W3C validator |