Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nf5r | Structured version Visualization version GIF version |
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.) df-nf 1788 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by Wolf Lammen, 23-Nov-2023.) |
Ref | Expression |
---|---|
nf5r | ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2176 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
3 | 2 | nfrd 1795 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nf5rd 2192 19.3t 2197 sbft 2265 bj-alrim 34802 bj-nexdt 34806 bj-cbv3tb 34896 bj-nfs1t2 34900 bj-equsal1t 34932 stdpc5t 34937 bj-axc14 34967 wl-nfeqfb 35622 |
Copyright terms: Public domain | W3C validator |