MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf5r Structured version   Visualization version   GIF version

Theorem nf5r 2189
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.) df-nf 1788 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by Wolf Lammen, 23-Nov-2023.)
Assertion
Ref Expression
nf5r (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))

Proof of Theorem nf5r
StepHypRef Expression
1 19.8a 2176 . 2 (𝜑 → ∃𝑥𝜑)
2 id 22 . . 3 (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑)
32nfrd 1795 . 2 (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
41, 3syl5 34 1 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by:  nf5rd  2192  19.3t  2197  sbft  2265  bj-alrim  34802  bj-nexdt  34806  bj-cbv3tb  34896  bj-nfs1t2  34900  bj-equsal1t  34932  stdpc5t  34937  bj-axc14  34967  wl-nfeqfb  35622
  Copyright terms: Public domain W3C validator