MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nexd Structured version   Visualization version   GIF version

Theorem nexd 2224
Description: Deduction for generalization rule for negated wff. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nexd.1 𝑥𝜑
nexd.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
nexd (𝜑 → ¬ ∃𝑥𝜓)

Proof of Theorem nexd
StepHypRef Expression
1 nexd.1 . . 3 𝑥𝜑
21nf5ri 2198 . 2 (𝜑 → ∀𝑥𝜑)
3 nexd.2 . 2 (𝜑 → ¬ 𝜓)
42, 3nexdh 1866 1 (𝜑 → ¬ ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-nf 1785
This theorem is referenced by:  axrepnd  10485  axunnd  10487
  Copyright terms: Public domain W3C validator