Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nexd | Structured version Visualization version GIF version |
Description: Deduction for generalization rule for negated wff. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nexd.1 | ⊢ Ⅎ𝑥𝜑 |
nexd.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
nexd | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nexd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2188 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | nexd.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
4 | 2, 3 | nexdh 1868 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: axrepnd 10350 axunnd 10352 |
Copyright terms: Public domain | W3C validator |