Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfai Structured version   Visualization version   GIF version

Theorem bj-nnfai 34839
Description: Nonfreeness implies the equivalent of ax-5 1914, inference form. See nf5ri 2191. (Contributed by BJ, 22-Sep-2024.)
Hypothesis
Ref Expression
bj-nnfai.1 Ⅎ'𝑥𝜑
Assertion
Ref Expression
bj-nnfai (𝜑 → ∀𝑥𝜑)

Proof of Theorem bj-nnfai
StepHypRef Expression
1 bj-nnfai.1 . 2 Ⅎ'𝑥𝜑
2 bj-nnfa 34837 . 2 (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
31, 2ax-mp 5 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  Ⅎ'wnnf 34832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-bj-nnf 34833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator