Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfad Structured version   Visualization version   GIF version

Theorem bj-nnfad 34911
Description: Nonfreeness implies the equivalent of ax-5 1913, deduction form. See nf5rd 2189. (Contributed by BJ, 2-Dec-2023.)
Hypothesis
Ref Expression
bj-nnfad.1 (𝜑 → Ⅎ'𝑥𝜓)
Assertion
Ref Expression
bj-nnfad (𝜑 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem bj-nnfad
StepHypRef Expression
1 bj-nnfad.1 . 2 (𝜑 → Ⅎ'𝑥𝜓)
2 bj-nnfa 34910 . 2 (Ⅎ'𝑥𝜓 → (𝜓 → ∀𝑥𝜓))
31, 2syl 17 1 (𝜑 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  Ⅎ'wnnf 34905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-bj-nnf 34906
This theorem is referenced by:  bj-nnfand  34931  bj-nnford  34933
  Copyright terms: Public domain W3C validator