Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nf5ri | Structured version Visualization version GIF version |
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 15-Mar-2023.) |
Ref | Expression |
---|---|
nf5ri.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nf5ri | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5ri.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1795 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
3 | 2 | 19.23bi 2187 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-ex 1786 df-nf 1790 |
This theorem is referenced by: 19.3 2198 alimd 2208 alrimi 2209 eximd 2212 nexd 2217 albid 2218 exbid 2219 hbs1 2269 hba1 2293 hban 2300 hb3an 2301 nfal 2320 hbex 2322 nfsbv 2327 hbsbwOLD 2329 cbv3v 2335 cbv3 2398 equs45f 2460 nfs1 2493 sb6f 2502 hbsb 2530 hbab1 2725 nfsab 2729 nfsabg 2730 nfcrii 2900 nfcriiOLD 2901 ralrimi 3141 hbra1 3145 bnj1316 32779 bnj1379 32789 bnj1468 32805 bnj958 32899 bnj981 32909 bnj1014 32920 bnj1128 32949 bnj1204 32971 bnj1279 32977 bnj1398 32993 bnj1408 32995 bnj1444 33002 bnj1445 33003 bnj1446 33004 bnj1447 33005 bnj1448 33006 bnj1449 33007 bnj1463 33014 bnj1312 33017 bnj1518 33023 bnj1519 33024 bnj1520 33025 bnj1525 33028 bj-cbv2v 34959 bj-equs45fv 34972 mpobi123f 36299 |
Copyright terms: Public domain | W3C validator |