| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5ri | Structured version Visualization version GIF version | ||
| Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 15-Mar-2023.) |
| Ref | Expression |
|---|---|
| nf5ri.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nf5ri | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5ri.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1789 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
| 3 | 2 | 19.23bi 2192 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: 19.3 2203 alimd 2213 alrimi 2214 eximd 2217 nexd 2222 albid 2223 exbid 2224 hbs1 2274 hba1 2293 hban 2300 hb3an 2301 nfal 2322 hbex 2324 nfsbv 2329 cbv3v 2333 cbv3 2396 equs45f 2458 nfs1 2487 sb6f 2496 hbsb 2523 hbab1 2717 nfsab 2720 nfsabg 2721 nfcrii 2887 ralrimi 3236 hbra1 3277 nfralw 3287 bnj1316 34817 bnj1379 34827 bnj1468 34843 bnj958 34937 bnj981 34947 bnj1014 34958 bnj1128 34987 bnj1204 35009 bnj1279 35015 bnj1398 35031 bnj1408 35033 bnj1444 35040 bnj1445 35041 bnj1446 35042 bnj1447 35043 bnj1448 35044 bnj1449 35045 bnj1463 35052 bnj1312 35055 bnj1518 35061 bnj1519 35062 bnj1520 35063 bnj1525 35066 bj-cbv2v 36793 bj-equs45fv 36806 mpobi123f 38163 |
| Copyright terms: Public domain | W3C validator |