![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf5ri | Structured version Visualization version GIF version |
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 15-Mar-2023.) |
Ref | Expression |
---|---|
nf5ri.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nf5ri | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5ri.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1787 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
3 | 2 | 19.23bi 2192 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: 19.3 2203 alimd 2213 alrimi 2214 eximd 2217 nexd 2222 albid 2223 exbid 2224 hbs1 2275 hba1 2297 hban 2304 hb3an 2305 nfal 2327 hbex 2329 nfsbv 2334 cbv3v 2341 cbv3 2405 equs45f 2467 nfs1 2496 sb6f 2505 hbsb 2532 hbab1 2726 nfsab 2730 nfsabg 2731 nfcrii 2903 ralrimi 3263 hbra1 3307 nfralw 3317 bnj1316 34796 bnj1379 34806 bnj1468 34822 bnj958 34916 bnj981 34926 bnj1014 34937 bnj1128 34966 bnj1204 34988 bnj1279 34994 bnj1398 35010 bnj1408 35012 bnj1444 35019 bnj1445 35020 bnj1446 35021 bnj1447 35022 bnj1448 35023 bnj1449 35024 bnj1463 35031 bnj1312 35034 bnj1518 35040 bnj1519 35041 bnj1520 35042 bnj1525 35045 bj-cbv2v 36764 bj-equs45fv 36777 mpobi123f 38122 |
Copyright terms: Public domain | W3C validator |