| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5ri | Structured version Visualization version GIF version | ||
| Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 15-Mar-2023.) |
| Ref | Expression |
|---|---|
| nf5ri.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nf5ri | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5ri.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1789 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
| 3 | 2 | 19.23bi 2191 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: 19.3 2202 alimd 2212 alrimi 2213 eximd 2216 nexd 2221 albid 2222 exbid 2223 hbs1 2274 hba1 2293 hban 2300 hb3an 2301 nfal 2323 hbex 2325 nfsbv 2330 cbv3v 2336 cbv3 2401 equs45f 2463 nfs1 2492 sb6f 2501 hbsb 2528 hbab1 2722 nfsab 2725 nfsabg 2726 nfcrii 2893 ralrimi 3240 hbra1 3281 nfralw 3291 bnj1316 34851 bnj1379 34861 bnj1468 34877 bnj958 34971 bnj981 34981 bnj1014 34992 bnj1128 35021 bnj1204 35043 bnj1279 35049 bnj1398 35065 bnj1408 35067 bnj1444 35074 bnj1445 35075 bnj1446 35076 bnj1447 35077 bnj1448 35078 bnj1449 35079 bnj1463 35086 bnj1312 35089 bnj1518 35095 bnj1519 35096 bnj1520 35097 bnj1525 35100 bj-cbv2v 36816 bj-equs45fv 36829 mpobi123f 38186 |
| Copyright terms: Public domain | W3C validator |