| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5ri | Structured version Visualization version GIF version | ||
| Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 15-Mar-2023.) |
| Ref | Expression |
|---|---|
| nf5ri.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nf5ri | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5ri.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1790 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
| 3 | 2 | 19.23bi 2194 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: 19.3 2205 alimd 2215 alrimi 2216 eximd 2219 nexd 2224 albid 2225 exbid 2226 hbs1 2276 hba1 2295 hban 2302 hb3an 2303 nfal 2324 hbex 2326 nfsbv 2331 cbv3v 2335 cbv3 2397 equs45f 2459 nfs1 2488 sb6f 2497 hbsb 2524 hbab1 2718 nfsab 2721 nfsabg 2722 nfcrii 2889 ralrimi 3230 hbra1 3269 nfralw 3279 bnj1316 34832 bnj1379 34842 bnj1468 34858 bnj958 34952 bnj981 34962 bnj1014 34973 bnj1128 35002 bnj1204 35024 bnj1279 35030 bnj1398 35046 bnj1408 35048 bnj1444 35055 bnj1445 35056 bnj1446 35057 bnj1447 35058 bnj1448 35059 bnj1449 35060 bnj1463 35067 bnj1312 35070 bnj1518 35076 bnj1519 35077 bnj1520 35078 bnj1525 35081 bj-cbv2v 36840 bj-equs45fv 36853 mpobi123f 38210 |
| Copyright terms: Public domain | W3C validator |