![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf5ri | Structured version Visualization version GIF version |
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 15-Mar-2023.) |
Ref | Expression |
---|---|
nf5ri.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nf5ri | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5ri.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1789 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
3 | 2 | 19.23bi 2182 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-ex 1780 df-nf 1784 |
This theorem is referenced by: 19.3 2193 alimd 2203 alrimi 2204 eximd 2207 nexd 2212 albid 2213 exbid 2214 hbs1 2263 hba1 2287 hban 2294 hb3an 2295 nfal 2314 hbex 2316 nfsbv 2321 hbsbwOLD 2323 cbv3v 2329 cbv3 2394 equs45f 2456 nfs1 2485 sb6f 2494 hbsb 2521 hbab1 2716 nfsab 2720 nfsabg 2721 nfcrii 2893 nfcriiOLD 2894 ralrimi 3252 hbra1 3296 nfralw 3306 bnj1316 34127 bnj1379 34137 bnj1468 34153 bnj958 34247 bnj981 34257 bnj1014 34268 bnj1128 34297 bnj1204 34319 bnj1279 34325 bnj1398 34341 bnj1408 34343 bnj1444 34350 bnj1445 34351 bnj1446 34352 bnj1447 34353 bnj1448 34354 bnj1449 34355 bnj1463 34362 bnj1312 34365 bnj1518 34371 bnj1519 34372 bnj1520 34373 bnj1525 34376 bj-cbv2v 35981 bj-equs45fv 35994 mpobi123f 37335 |
Copyright terms: Public domain | W3C validator |