| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5ri | Structured version Visualization version GIF version | ||
| Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 15-Mar-2023.) |
| Ref | Expression |
|---|---|
| nf5ri.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nf5ri | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5ri.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1789 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
| 3 | 2 | 19.23bi 2192 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: 19.3 2203 alimd 2213 alrimi 2214 eximd 2217 nexd 2222 albid 2223 exbid 2224 hbs1 2274 hba1 2293 hban 2300 hb3an 2301 nfal 2322 hbex 2324 nfsbv 2329 cbv3v 2333 cbv3 2395 equs45f 2457 nfs1 2486 sb6f 2495 hbsb 2522 hbab1 2716 nfsab 2719 nfsabg 2720 nfcrii 2886 ralrimi 3233 hbra1 3273 nfralw 3283 bnj1316 34783 bnj1379 34793 bnj1468 34809 bnj958 34903 bnj981 34913 bnj1014 34924 bnj1128 34953 bnj1204 34975 bnj1279 34981 bnj1398 34997 bnj1408 34999 bnj1444 35006 bnj1445 35007 bnj1446 35008 bnj1447 35009 bnj1448 35010 bnj1449 35011 bnj1463 35018 bnj1312 35021 bnj1518 35027 bnj1519 35028 bnj1520 35029 bnj1525 35032 bj-cbv2v 36759 bj-equs45fv 36772 mpobi123f 38129 |
| Copyright terms: Public domain | W3C validator |