MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf5ri Structured version   Visualization version   GIF version

Theorem nf5ri 2196
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 15-Mar-2023.)
Hypothesis
Ref Expression
nf5ri.1 𝑥𝜑
Assertion
Ref Expression
nf5ri (𝜑 → ∀𝑥𝜑)

Proof of Theorem nf5ri
StepHypRef Expression
1 nf5ri.1 . . 3 𝑥𝜑
21nfri 1789 . 2 (∃𝑥𝜑 → ∀𝑥𝜑)
3219.23bi 2192 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  19.3  2203  alimd  2213  alrimi  2214  eximd  2217  nexd  2222  albid  2223  exbid  2224  hbs1  2274  hba1  2293  hban  2300  hb3an  2301  nfal  2322  hbex  2324  nfsbv  2329  cbv3v  2333  cbv3  2396  equs45f  2458  nfs1  2487  sb6f  2496  hbsb  2523  hbab1  2717  nfsab  2720  nfsabg  2721  nfcrii  2887  ralrimi  3236  hbra1  3277  nfralw  3287  bnj1316  34817  bnj1379  34827  bnj1468  34843  bnj958  34937  bnj981  34947  bnj1014  34958  bnj1128  34987  bnj1204  35009  bnj1279  35015  bnj1398  35031  bnj1408  35033  bnj1444  35040  bnj1445  35041  bnj1446  35042  bnj1447  35043  bnj1448  35044  bnj1449  35045  bnj1463  35052  bnj1312  35055  bnj1518  35061  bnj1519  35062  bnj1520  35063  bnj1525  35066  bj-cbv2v  36793  bj-equs45fv  36806  mpobi123f  38163
  Copyright terms: Public domain W3C validator