| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5ri | Structured version Visualization version GIF version | ||
| Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 15-Mar-2023.) |
| Ref | Expression |
|---|---|
| nf5ri.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nf5ri | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5ri.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1789 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
| 3 | 2 | 19.23bi 2192 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: 19.3 2203 alimd 2213 alrimi 2214 eximd 2217 nexd 2222 albid 2223 exbid 2224 hbs1 2274 hba1 2293 hban 2300 hb3an 2301 nfal 2322 hbex 2324 nfsbv 2329 cbv3v 2333 cbv3 2395 equs45f 2457 nfs1 2486 sb6f 2495 hbsb 2522 hbab1 2716 nfsab 2719 nfsabg 2720 nfcrii 2886 ralrimi 3235 hbra1 3275 nfralw 3285 bnj1316 34810 bnj1379 34820 bnj1468 34836 bnj958 34930 bnj981 34940 bnj1014 34951 bnj1128 34980 bnj1204 35002 bnj1279 35008 bnj1398 35024 bnj1408 35026 bnj1444 35033 bnj1445 35034 bnj1446 35035 bnj1447 35036 bnj1448 35037 bnj1449 35038 bnj1463 35045 bnj1312 35048 bnj1518 35054 bnj1519 35055 bnj1520 35056 bnj1525 35059 bj-cbv2v 36786 bj-equs45fv 36799 mpobi123f 38156 |
| Copyright terms: Public domain | W3C validator |