MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf5ri Structured version   Visualization version   GIF version

Theorem nf5ri 2196
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 15-Mar-2023.)
Hypothesis
Ref Expression
nf5ri.1 𝑥𝜑
Assertion
Ref Expression
nf5ri (𝜑 → ∀𝑥𝜑)

Proof of Theorem nf5ri
StepHypRef Expression
1 nf5ri.1 . . 3 𝑥𝜑
21nfri 1789 . 2 (∃𝑥𝜑 → ∀𝑥𝜑)
3219.23bi 2192 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  19.3  2203  alimd  2213  alrimi  2214  eximd  2217  nexd  2222  albid  2223  exbid  2224  hbs1  2274  hba1  2293  hban  2300  hb3an  2301  nfal  2322  hbex  2324  nfsbv  2329  cbv3v  2333  cbv3  2395  equs45f  2457  nfs1  2486  sb6f  2495  hbsb  2522  hbab1  2716  nfsab  2719  nfsabg  2720  nfcrii  2886  ralrimi  3227  hbra1  3266  nfralw  3276  bnj1316  34787  bnj1379  34797  bnj1468  34813  bnj958  34907  bnj981  34917  bnj1014  34928  bnj1128  34957  bnj1204  34979  bnj1279  34985  bnj1398  35001  bnj1408  35003  bnj1444  35010  bnj1445  35011  bnj1446  35012  bnj1447  35013  bnj1448  35014  bnj1449  35015  bnj1463  35022  bnj1312  35025  bnj1518  35031  bnj1519  35032  bnj1520  35033  bnj1525  35036  bj-cbv2v  36772  bj-equs45fv  36785  mpobi123f  38142
  Copyright terms: Public domain W3C validator