Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfa Structured version   Visualization version   GIF version

Theorem bj-nnfa 36694
Description: Nonfreeness implies the equivalent of ax-5 1909. See nf5r 2195. (Contributed by BJ, 28-Jul-2023.)
Assertion
Ref Expression
bj-nnfa (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑))

Proof of Theorem bj-nnfa
StepHypRef Expression
1 df-bj-nnf 36690 . 2 (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)))
21simprbi 496 1 (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1777  Ⅎ'wnnf 36689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-bj-nnf 36690
This theorem is referenced by:  bj-nnfad  36695  bj-nnfai  36696  bj-nnfea  36700  bj-nnfim1  36710  bj-nnfim2  36711  bj-nnf-alrim  36721  bj-19.23t  36736  bj-19.37im  36738  bj-19.42t  36739  bj-sbft  36741
  Copyright terms: Public domain W3C validator