Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfa | Structured version Visualization version GIF version |
Description: Nonfreeness implies the equivalent of ax-5 1914. See nf5r 2189. (Contributed by BJ, 28-Jul-2023.) |
Ref | Expression |
---|---|
bj-nnfa | ⊢ (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-nnf 34833 | . 2 ⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) | |
2 | 1 | simprbi 496 | 1 ⊢ (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 Ⅎ'wnnf 34832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-bj-nnf 34833 |
This theorem is referenced by: bj-nnfad 34838 bj-nnfai 34839 bj-nnfea 34843 bj-nnfim1 34853 bj-nnfim2 34854 bj-nnf-alrim 34864 bj-19.23t 34879 bj-19.37im 34881 bj-19.42t 34882 bj-sbft 34884 |
Copyright terms: Public domain | W3C validator |