![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfe | Structured version Visualization version GIF version |
Description: Nonfreeness implies the equivalent of ax5e 1916. (Contributed by BJ, 28-Jul-2023.) |
Ref | Expression |
---|---|
bj-nnfe | ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-nnf 35218 | . 2 ⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) | |
2 | 1 | simplbi 499 | 1 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1782 Ⅎ'wnnf 35217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-bj-nnf 35218 |
This theorem is referenced by: bj-nnfed 35226 bj-nnfei 35227 bj-nnfea 35228 bj-nnfim1 35238 bj-nnfim2 35239 bj-nnf-exlim 35250 bj-19.21t 35263 bj-19.36im 35265 bj-19.42t 35267 bj-sbft 35269 |
Copyright terms: Public domain | W3C validator |