|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfe | Structured version Visualization version GIF version | ||
| Description: Nonfreeness implies the equivalent of ax5e 1912. (Contributed by BJ, 28-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| bj-nnfe | ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-bj-nnf 36725 | . 2 ⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎ'wnnf 36724 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-bj-nnf 36725 | 
| This theorem is referenced by: bj-nnfed 36733 bj-nnfei 36734 bj-nnfea 36735 bj-nnfim1 36745 bj-nnfim2 36746 bj-nnf-exlim 36757 bj-19.21t 36770 bj-19.36im 36772 bj-19.42t 36774 bj-sbft 36776 | 
| Copyright terms: Public domain | W3C validator |