| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfe | Structured version Visualization version GIF version | ||
| Description: Nonfreeness implies the equivalent of ax5e 1912. (Contributed by BJ, 28-Jul-2023.) |
| Ref | Expression |
|---|---|
| bj-nnfe | ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-nnf 36747 | . 2 ⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎ'wnnf 36746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-bj-nnf 36747 |
| This theorem is referenced by: bj-nnfed 36755 bj-nnfei 36756 bj-nnfea 36757 bj-nnfim1 36767 bj-nnfim2 36768 bj-nnf-exlim 36779 bj-19.21t 36792 bj-19.36im 36794 bj-19.42t 36796 bj-sbft 36798 |
| Copyright terms: Public domain | W3C validator |